应力应变关系¶
变形体力学的基本关系
- 平衡关系:平衡方程、力的边界条件
- 连续关系(几何关系):位移-应变关系
- 物理关系(本构关系):应力-应变关系
本构关系流程:
flowchart LR
A[热力学定律] --> B[基本框架]
B --> C[模型选择]
C --> D[参数测定]
D --> E[实用本构关系] 4-1 应力应变一般关系¶
\[ \begin{aligned} \sigma_{x} &= f_1(\varepsilon_x, \varepsilon_y, \varepsilon_z, \gamma_{yz}, \gamma_{zx}, \gamma_{xy}) \\ \sigma_{y} &= f_2(\varepsilon_x, \varepsilon_y, \varepsilon_z, \gamma_{yz}, \gamma_{zx}, \gamma_{xy}) \\ \sigma_{z} &= f_3(\varepsilon_x, \varepsilon_y, \varepsilon_z, \gamma_{yz}, \gamma_{zx}, \gamma_{xy}) \\ \tau_{yz} &= f_4(\varepsilon_x, \varepsilon_y, \varepsilon_z, \gamma_{yz}, \gamma_{zx}, \gamma_{xy}) \\ \tau_{zx} &= f_5(\varepsilon_x, \varepsilon_y, \varepsilon_z, \gamma_{yz}, \gamma_{zx}, \gamma_{xy}) \\ \tau_{xy} &= f_6(\varepsilon_x, \varepsilon_y, \varepsilon_z, \gamma_{yz}, \gamma_{zx}, \gamma_{xy}) \end{aligned} \]
- Cauchy 材料
- \(f_i\) 为具体的函数或泛函,取决于材料的物理特性
小变形情形¶
\[ \sigma_x = \left( f_1 \right)_0 + \left( \frac{\partial f_1}{\partial \varepsilon_x} \right)_0 \varepsilon_x + \left( \frac{\partial f_1}{\partial \varepsilon_y} \right)_0 \varepsilon_y + \left( \frac{\partial f_1}{\partial \varepsilon_z} \right)_0 \varepsilon_z + \left( \frac{\partial f_1}{\partial \gamma_{yz}} \right)_0 \gamma_{yz} + \left( \frac{\partial f_1}{\partial \gamma_{zx}} \right)_0 \gamma_{zx} + \left( \frac{\partial f_1}{\partial \gamma_{xy}} \right)_0 \gamma_{xy} + \omicron(\varepsilon, \gamma) \]
- \((\cdot)_0\) 表示应力为 0 处
- 无初始应力假设:\((f_1)_0 = 0\)
\[ \begin{aligned} \sigma_x &= C_{11} \varepsilon_x + C_{12} \varepsilon_y + C_{13} \varepsilon_z + C_{14} \gamma_{yz} + C_{15} \gamma_{zx} + C_{16} \gamma_{xy} \\ \sigma_y &= C_{21} \varepsilon_x + C_{22} \varepsilon_y + C_{23} \varepsilon_z + C_{24} \gamma_{yz} + C_{25} \gamma_{zx} + C_{26} \gamma_{xy} \\ \sigma_z &= C_{31} \varepsilon_x + C_{32} \varepsilon_y + C_{33} \varepsilon_z + C_{34} \gamma_{yz} + C_{35} \gamma_{zx} + C_{36} \gamma_{xy} \\ \tau_{yz} &= C_{41} \varepsilon_x + C_{42} \varepsilon_y + C_{43} \varepsilon_z + C_{44} \gamma_{yz} + C_{45} \gamma_{zx} + C_{46} \gamma_{xy} \\ \tau_{zx} &= C_{51} \varepsilon_x + C_{52} \varepsilon_y + C_{53} \varepsilon_z + C_{54} \gamma_{yz} + C_{55} \gamma_{zx} + C_{56} \gamma_{xy} \\ \tau_{xy} &= C_{61} \varepsilon_x + C_{62} \varepsilon_y + C_{63} \varepsilon_z + C_{64} \gamma_{yz} + C_{65} \gamma_{zx} + C_{66} \gamma_{xy} \end{aligned} \]
- 广义胡克定律(Generalized Hooke's Law)
4-2 热力学基本定律¶
基本概念¶
- 系统、周围环境、界面
- 状态变量:基本状态变量(应变或应力、温度)、状态函数(体积变化)
- 过程:可逆、不可逆
热力学第一定律¶
内能 + 动能 = 外力功 + 热量(输入)
\[ \begin{equation} \label{eq:first_law_thermodynamics} \Delta U + \Delta K = \Delta A + \Delta Q \end{equation} \]
写成率形式,
\[ \begin{equation} \label{eq:first_law_thermodynamics_rate} \dot{U} + \dot{K} = \dot{A} + \dot{Q} \end{equation} \]
应用于连续介质:
- 内能
\[ U = \int_V u \, \mathrm{d}V \]
- 动能
\[ K = \frac{1}{2} \int_V \rho v_i v_i \, \mathrm{d}V \]
- 外力功率(体力和面力)
\[ \dot{A} = \int_V F_i v_i \, \mathrm{d}V + \int_S T_i v_i \, \mathrm{d}S \]
- 热量变化率
\[ \dot{Q} = \int_V r \, \mathrm{d}V - \int_S h_i n_i \, \mathrm{d}S \]
其中,\(r\) 为热源强度(单位时间内单位体积产生的热量),\(h_i\) 为热流速率矢量(单位时间内沿温度梯度方向流经单位面积的热量)。
代入式 \eqref{eq:first_law_thermodynamics_rate} 得
\[ \int_V \dot{u} \, \mathrm{d}V + \int_V \rho v_i \dot{v}_i \, \mathrm{d}V = \int_V F_i v_i \, \mathrm{d}V + \int_S T_i v_i \, \mathrm{d}S + \int_V r \, \mathrm{d}V - \int_S h_i n_i \, \mathrm{d}S \]
在解决弹性力学问题时,不会直接用到热力学第一定律,只在推导本构关系的时候会用到。
而流体力学的激波问题中会用到热力学第一定律。
基本状态变量:应变 \(\varepsilon_{ij}\)、温度 \(T\)
功共轭变量:应力 \(\sigma_{ij}\) 与应变 \(\varepsilon_{ij}\) 共轭,熵 \(\eta\) 与温度 \(T\) 共轭
对基本状态变量求导,得到其功共轭变量
勒让德变换:对物理系统减去一对功共轭变量的乘积
4-4 各向同性弹性体¶
- 本构方程
\[ \begin{equation} \label{eq:isotropic_constitutive} \left \{ \begin{aligned} \sigma_x &= C_{12} \theta + (C_{11} - C_{12}) \varepsilon_x, \, \tau_{yz} = \frac{1}{2} (C_{11} - C_{12}) \gamma_{yz} \\ \sigma_y &= C_{12} \theta + (C_{11} - C_{12}) \varepsilon_y, \, \tau_{xz} = \frac{1}{2} (C_{11} - C_{12}) \gamma_{xz} \\ \sigma_z &= C_{12} \theta + (C_{11} - C_{12}) \varepsilon_z, \, \tau_{xy} = \frac{1}{2} (C_{11} - C_{12}) \gamma_{xy} \end{aligned} \right. \end{equation} \]
Lamé's constants: \(C_{12} = \lambda, C_{11} - C_{12} = 2\mu\)
式 \eqref{eq:isotropic_constitutive} 化为
\[ \begin{equation} \sigma_{ij} = \lambda \varepsilon_{kk} \delta_{ij} + 2 \mu \varepsilon_{ij} \end{equation} \]
由 \(\sigma_{ij} = C_{ijkl} \varepsilon_{kl}\) 可得
\[ C_{ijkl} = \lambda \delta_{ij} \delta_{kl} + 2 \mu \delta_{ik} \delta_{jl} \]
- 用应力表示应变
\[ \begin{equation} \label{eq:isotropic_constitutive_inverse} \left \{ \begin{aligned} \sigma_x &= \frac{\sigma_x}{2\mu} - \frac{\lambda}{2\mu(3\lambda + 2\mu)} \Theta, \, \gamma_{yz} = \frac{\tau_{yz}}{\mu} \\ \sigma_y &= \frac{\sigma_y}{2\mu} - \frac{\lambda}{2\mu(3\lambda + 2\mu)} \Theta, \, \gamma_{xz} = \frac{\tau_{xz}}{\mu} \\ \sigma_z &= \frac{\sigma_z}{2\mu} - \frac{\lambda}{2\mu(3\lambda + 2\mu)} \Theta, \, \gamma_{xy} = \frac{\tau_{xy}}{\mu} \end{aligned} \right. \end{equation} \]
其中 \(\Theta = \sigma_x + \sigma_y + \sigma_z\). 三式相加得 \(\Theta = (3\lambda + 2\mu) \theta \equiv 3 K \theta\),定义体积模量(Bulk modulus)为
\[ K = \frac{3\lambda + 2\mu}{3} \]