平面问题的极坐标解答¶
7-1 平面问题的极坐标方程¶
坐标转换关系:
\[ \left \{ \begin{aligned} x &= \rho \cos \varphi \\ y &= \rho \sin \varphi \end{aligned} \right. \quad \iff \quad \left \{ \begin{aligned} \rho &= \sqrt{x^2 + y^2} \\ \varphi &= \arctan \frac{y}{x} \end{aligned} \right. \]
单元体平衡¶
径向平衡:
\[ \left[\left( \sigma_{\rho} + \frac{\partial \sigma_{\rho}}{\partial \rho} \mathrm{d} \rho \right) \underset{微元长度有变化}{\underbrace{(\rho + \mathrm{d} \rho)}} \mathrm{d} \varphi - \sigma_{\rho} \rho \mathrm{d} \varphi \right] + \left[ \left(\tau_{\varphi \rho} + \frac{\partial \tau_{\varphi \rho}}{\partial \rho} \mathrm{d} \varphi \right) \mathrm{d} \rho - \tau_{\varphi \rho} \mathrm{d} \rho \right] - \left[\sigma_{\varphi} \mathrm{d} \rho \frac{\mathrm{d} \varphi}{2} + \left( \sigma_{\varphi} + \right) \right] \]
7-2 轴对称问题¶
- Torsionless axisymmetric problems(本章内容)
- Torsional axisymmetric problems
切一刀再拼起来
Eshelby 夹杂问题 (1956)
- Inglis 解 \(\(\sigma_{\max} = \left(1 + \frac{2a}{b}\right)q\)\)
- Griffith 裂纹
- 应力强度因子(颠覆了传统的设计方式)
补充:旋转圆盘¶
等速旋转圆盘
平衡方程:
\[ \frac{\mathrm{d} \sigma_{\rho}}{\mathrm{d} \rho} + \frac{\sigma_{\rho} - \sigma_{\varphi}}{\rho} + m \omega^2 \rho = 0 \]
代入本构关系,得到位移控制方程。该问题较简单,可以直接采用位移解法。