跳转至

连续系统

一维问题

  • 杆、轴、弦

杆纵向振动微分方程

  • 平截面假设
  • 纵向伸缩引起的横向变形是高阶小量

对杆的微元体列牛顿第二定律:

\[ f(x,t) \, \mathrm{d} x + N(x + \mathrm{d} x, t) - N(x,t) = \rho(x) A(x) \, \mathrm{d} x \frac{\partial^2 u}{\partial t^2} \]

略去高阶小量 \(\omicron(\mathrm{d} x)\),得 \(N(x + \mathrm{d} x, t) \approx N(x,t) + \frac{\partial N}{\partial x} \mathrm{d} x\). 代入上式可得

\[ \frac{\partial N(x, t)}{\partial x} + f(x,t) = \rho(x) A(x) \frac{\partial^2 u}{\partial t^2} \qquad (\text{in } \Omega) \]

\[ N(x, t) = A(x) \sigma(x, t) = A(x) E(x) \varepsilon(x, t) = A(x) E(x) \frac{\partial u}{\partial x} \]

代入上式,得杆的纵向振动微分方程:

\[ \begin{equation} \label{eq:longitudinal-vibration} \tag{3.1} \underset{惯性力}{\underbrace{\rho(x) A(x) \frac{\partial^2 u}{\partial t^2}}} - \underset{恢复力}{\underbrace{\frac{\partial}{\partial x} \left[ E(x) A(x) \frac{\partial u}{\partial x} \right]}} = \underset{外力}{\underbrace{f(x,t)}} \end{equation} \]

注意到上式没有阻尼力,所以是无阻尼振动微分方程。实际的阻尼分为外阻尼和内阻尼,较为复杂。观察 \eqref{eq:longitudinal-vibration} 的系数,可知这是一个双曲型方程。

  • 初始条件
\[ u(x, t)\bigg|_{t=t_0} = \varphi(x) , \quad \left.\frac{\partial u(x, t)}{\partial t} \right|_{t=t_0} = \psi(x). \]
  • 边界条件(\(x = 0\)
    • 固定端 \(u(0, t) = 0\)
    • 自由端 \(N(0, t) = 0 \iff \left.\frac{\partial u}{\partial x}\right|_{x=0} = 0\)
    • 弹性支撑 \(\left.\left(E A \frac{\partial u}{\partial x}\right)\right|_{x=0} - k_1 \left.u(x, t)\right|_{x=0} = 0\)

      实际上,令 \(k_1 \to \infty\) 可得固定端,\(k_1 = 0\) 可得自由端.

    • 集中质量 \(\left.\left(E A \frac{\partial u}{\partial x}\right)\right|_{x=0} - M \left.\frac{\partial^2 u}{\partial t^2}\right|_{x=0} = 0\)

回顾:定解问题的一般解法

  1. 边界条件齐次化 找到只需满足边界条件的特解 \(\psi(x, t)\),令 \(u(x, t) = \tilde{u}(x, t) + \psi(x, t)\),则 \(\tilde{u}(x, t)\) 满足齐次边界条件.
  2. 原方程 \(\mathcal{L} [\tilde{u}(x, t) + \psi(x, t)] = f(x, t)\) 转化为
\[ \mathcal{L} [\tilde{u}(x, t)] = f(x, t) - \mathcal{L} [\psi(x, t)] \]
  • \(f(x, t)\) 为已知外力
  • \(\mathcal{L} [\psi(x, t)]\) 为已知的,由边界条件齐次化引入的附加项

方程非线性 vs. 边界条件非线性

  • 若考虑更高阶的应变:
\[ \varepsilon(x, t) = \frac{\partial u}{\partial x} + \frac{1}{2} \left(\frac{\partial u}{\partial x}\right)^2 + \cdots \]

则方程变为非线性微分方程.

  • 若弹簧式非线性的:
\[ F = k_1 u + k_3 u^3 + \cdots \]

则边界条件变为非线性边界条件. 以上两种情况都属于非线性问题,不能使用分离变量法.

圆轴的扭转振动

对式 \eqref{eq:longitudinal-vibration} 中的变量进行替换:\(u(x, t) \mapsto \theta(x, t), \, A(x) \mapsto I(x), \, E(x) \mapsto G(x), \, f(x, t) \mapsto m(x, t)\),即可得到圆轴的扭转振动微分方程:

\[ \begin{equation} \label{eq:torsional-vibration} \tag{3.2} \rho(x) I(x) \frac{\partial^2 \theta}{\partial t^2} - \frac{\partial}{\partial x} \left[ G(x) I(x) \frac{\partial \theta}{\partial x} \right] = m(x, t) \qquad (\text{in } \Omega) \end{equation} \]
  1. 初始条件
\[ \theta(x, 0) = \varphi(x) , \quad \left.\frac{\partial \theta}{\partial t} \right|_{t=0} = \psi(x). \]
  1. 边界条件(\(x = 0\)
    • 固定端 \(\theta(0, t) = 0\)
    • 自由端 \(\left.\frac{\partial \theta}{\partial x}\right|_{x=0} = 0\)
    • 弹性支撑 \(\left.\left(G I \frac{\partial \theta}{\partial x}\right)\right|_{x=0} - k_1 \left.\theta(x, t)\right|_{x=0} = 0\)
    • 集中转动惯量 \(\left.\left(G I \frac{\partial \theta}{\partial x}\right)\right|_{x=0} - J \left.\frac{\partial^2 \theta}{\partial t^2}\right|_{x=0} = 0\)

弦振动方程

\[ \begin{aligned} \rho(x) A(x) \, \mathrm{d} x \frac{\partial^2 u}{\partial t^2} = \sum F &= f(x,t) \, \mathrm{d} x + T_0(x + \mathrm{d} x, t) \sin \theta(x + \mathrm{d} x, t) - T_0(x, t) \sin \theta(x, t) \\ &\approx f(x,t) \, \mathrm{d} x + T_0(x, t) \theta(x + \mathrm{d} x, t) - T_0(x, t) \theta(x, t) \\ &\xlongequal{\theta(x, t) \approx \frac{\partial u}{\partial x}} f(x,t) \, \mathrm{d} x + \frac{\partial}{\partial x} \left[ T_0(x, t) \frac{\partial u}{\partial x} \right] \mathrm{d} x \end{aligned} \]

得弦振动方程:

\[ \begin{equation} \label{eq:string-vibration} \tag{3.3} \rho(x) A(x) \frac{\partial^2 u}{\partial t^2} - \frac{\partial}{\partial x} \left[ T_0(x, t) \frac{\partial u}{\partial x} \right] = f(x,t) \qquad (\text{in } \Omega) \end{equation} \]

对于弦振动的边界条件,一般只考虑两端固定(有自由端就没有张力了)。

杆自由振动方程求解

式 \eqref{eq:longitudinal-vibration} 的齐次方程为

\[ \rho(x) A(x) \frac{\partial^2 u}{\partial t^2} - \frac{\partial}{\partial x} \left[ E(x) A(x) \frac{\partial u}{\partial x} \right] = 0 \]

\(\rho, E, A\) 均为常数,得到

\[ \begin{equation} \label{eq:wave-equation} \tag{3.4} \frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} \end{equation} \]

其中 \(c = \sqrt{\frac{E}{\rho}}\) 为波速。下面采用分离变量法。设 \(u(x, t) = U(x) T(t)\),代入 \eqref{eq:wave-equation} 得

\[ \frac{T''}{T} = c^2 \frac{U''}{U} \equiv -\omega^2 \]

得到两个 ODE:

\[ \left \{ \begin{aligned} &T'' + \omega^2 T = 0 \\ &U'' + \frac{\omega^2}{c^2} U = 0 \end{aligned} \right. \]

变截面梁纵向自由振动

分离变量法 \(u(x, t) = U(x) T(t)\)

梁横向振动

\[ \begin{equation} \rho(x) A(x) \frac{\partial^2 y}{\partial t^2} + \frac{\partial^2}{\partial x^2} \left[ E(x) I(x) \frac{\partial^2 y}{\partial x^2} \right] = f(x,t) \qquad (\text{in } \Omega) \end{equation} \]
  1. 初始条件

    \[ y(x, t_0) = \varphi(x) , \quad \left.\frac{\partial y}{\partial t} \right|_{t=t_0} = \psi(x). \]
  2. 边界条件(\(x = 0\)

    \[ \left \{ \begin{aligned} &\text{固支:} &&y(0, t) = 0 , \quad \theta(0, t) = 0 \\[1ex] &\text{简支:} &&y(0, t) = 0 , \quad M(0, t) = 0 \\[1ex] &\text{自由:} &&Q(0, t) = 0 , \quad M(0, t) = 0 \\[1ex] &\text{夹支:} &&\theta(0, t) = 0 , \quad Q(0, t) = 0 \\[1ex] &\text{弹性支撑:} &&Q(0, t) = (\pm ?)\, k_1 y(0, t) , \quad M(0, t) = (\pm ?)\, k_2 \theta(0, t) \\[1ex] &\text{集中质量:} &&Q(0, t) = (\pm ?)\, M \frac{\partial^2 y}{\partial t^2}\bigg|_{x=0} , \quad M(0, t) = \underset{\text{一般可忽略}}{\cancel{(\pm ?)\, J \frac{\partial^2 \theta}{\partial t^2}\bigg|_{x=0}}} \end{aligned} \right. \]

    算上 \(x = l\),共 \(6 \times 6 = 36\) 种边界条件.

求解步骤

  1. 边界条件齐次化!
    • 找到只需满足边界条件的特解 \(\psi(x, t)\),令 \(y(x, t) = \tilde{y}(x, t) + \psi(x, t)\),则 \(\tilde{y}(x, t)\) 满足齐次边界条件.
  2. 齐次方程 + 齐次边界条件 \(\implies\) 特征值问题 \(\left\{\begin{array}{c} \omega_1, & \omega_2, &\ldots \\ \varphi_1(x), & \varphi_2(x), &\ldots \end{array}\right\}\)

    正交性

    \[ \left \{ \begin{align} &\int_0^l \rho(x) A(x) \varphi_i(x) \varphi_j(x) \, \mathrm{d} x = \begin{cases} 0 , & i \neq j \\[1ex] M_i , & i = j \end{cases} \\ &\int_0^l E(x) I(x) \varphi_i''(x) \varphi_j''(x) \, \mathrm{d} x = \begin{cases} 0 , & i \neq j \\[1ex] K_i , & i = j \end{cases} \\ & K_i = \omega_i^2 M_i \end{align} \right. \]
  3. 振型叠加法求解:\(\displaystyle y(x, t) = \sum_{i=1}^\infty q_i(t) \varphi_i(x)\)\(q_i(t)\) 为完备基 \(\{\varphi_i\}\) 的广义坐标

几个定性结论

  1. \(n\) 阶振型有 \(n-1\) 个节点
    • 对所有 \(6 \times 6 = 36\) 种边界条件均成立!
    • 对任意梁(\(E(x), I(x), \rho(x), A(x)\) 可变)均成立!
    • 对任意杆、轴、弦振动均成立!
    • 甚至对于串联(离散)系统都成立!
  2. 关于频率
    • 连续系统无重频!
    • 频率 \(0 \leq \omega_1 < \omega_2 < \cdots < \omega_n \quad (n \to \infty)\)
      • 无约束系统可能取等号
  3. 振型节点的交错性
    1. 任意相邻两个振型(第 \(n\) 阶和第 \(n+1\) 阶)的节点相互交错
      • \(n\) 阶的两个相邻节点之间,肯定有一个 \(n+1\) 阶的节点
      • \(n+1\) 阶的两个相邻节点之间,肯定有一个 \(n\) 阶的节点
    2. 任意同阶的位移转角振型的节点相互交错
    3. 任意同阶的转角弯矩振型的节点相互交错(仅对于梁)
    4. 任意同阶的弯矩剪力振型的节点相互交错(仅对于梁)
  4. 杆、轴、弦存在无穷多个频率、振型,但只有 \(\textcolor{tomato}{2}\) 个振型是独立的!

    • 在设计的时候,需要对振型的节点做调控。这是一种反问题。
    \[ \begin{aligned} \lambda_j \varphi_j \cdot \frac{\mathrm{d}}{\mathrm{d} x} \left[E(x) A(x) \frac{\mathrm{d} \varphi_i}{\mathrm{d} x}\right] &= \lambda_j \varphi_j \cdot \lambda_i \rho(x) A(x) \varphi_i \\ \lambda_i \varphi_i \cdot \frac{\mathrm{d}}{\mathrm{d} x} \left[E(x) A(x) \frac{\mathrm{d} \varphi_j}{\mathrm{d} x}\right] &= \lambda_i \varphi_i \cdot \lambda_j \rho(x) A(x) \varphi_j \end{aligned} \]

    已知振型 \(\varphi_i, \varphi_j\) 和频率 \(\lambda_i, \lambda_j\),通过上式可以确定 \(E(x) A(x)\).

更详细的内容,见 王大钧等编著《结构力学中的定性理论》,北京大学出版社,2014 年.