跳转至

Chapter 1: Intro

Grading

  • 期末 60%
  • HW 25%
  • 考勤 5%
  • project 10%

平板、壳、杆件

  • Leonardo da Vinci
  • Galileo Galilei
  • Isaac Newton
  • Robert Hooke
  • Leonhard Euler
  • Stephen Timoshenko
  • Principle objective of Mechanics of Materials
  • Fundamental assumptions of deformable bodies
  • External force, internal force, and cross-sectional method (截面法)
  • Stress, displacement, deformation, and strain
  • *Engineering design process

1.1 Objectives

graph LR
    A(Deformable Bodies)
    B[Tension Compression]
    C[Bending]
    D[Shear]
    E[Torsion]
    F[Structure Mechanics]
    A --> B
    A --> C
    A --> D
    A --> E
    A --> F

Contents

To determine the stresses, strains, and displacements in the structures and their components subjected to external loads.

从理论上计算应力应变

大部分内容:实验先行 --> 理论

对象:杆件

Tasks

不同受力的杆有不同的名字:

  • column: 拉压杆
  • shaft: 扭转杆(轴)
  • beam: 弯曲杆(梁)

分析:

  • normal stress
  • shear stress

解决:deflection problem

  • Strength: Ability to resist fracture or materials do not collapse under large plastic deformation. \(\Longrightarrow\) 抵抗破坏的能力
  • Rigidity: Ability to resist deformation. \(\Longrightarrow\) 抵抗变形的能力
  • Stability: Ability to keep equilibrium configuration. \(\Longrightarrow\) 抵抗失稳的能力

压杆失稳

压杆的两头,杆弯曲变形

其它性能:

抗撞性能(controlled deceleration)

1.2 Fundamental Assumptions

  • Continuity: 杆件是连续的,没有裂纹、孔洞
  • Homogeneity: 杆件是均匀
  • Isotropy: 杆件是各向同性
  • Small deformation: 小变形假设

微观上来看,没有材料满足这些假设

1.3 External Force

Acting modes

力的作用方式:

  • Surface force(面力)
    • distribution force (力作用的面积和杆件大小同个数量级)
    • concentration force
  • Body force
    • self-weight
    • inertia force

Loading vs. Time

载荷是否变化:

  • Static load
  • Dynamic load
    • Alternating load
    • impact load

1.4 Internal Force & Stress

Internal Force

graph LR
    A[External Force]
    B[Relative displacement]
    C[Interacting force<br>(Internal force)]
    A --> B
    B --> C

内力由外力引起

Characteristics

  1. Continuously distributed force
  2. Equilibrium forces with external forces

内力与外力平衡

图1. 内力与外力平衡

内力简化

图2. 内力简化力系

Components

  • Normal
  • Shear

内力简化力系分量

图3. 内力简化力系的四个分量

  • \(F_N\): normal force(法向)
  • \(F_Q\): shear force(剪切)
  • \(M_x\): torsion(扭矩)
  • \(M_B\): bending moment(弯矩)

Sign Rule

At the same position, the internal forces on both side cross-sections possess the same sign.

法向力

拉为正,压为负。

剪力

对其内部的任意一点取矩,顺时针为正,逆时针为负。

剪力符号

弯矩

凸朝下为正,凸朝上为负。

扭矩

右手螺旋大拇指指向外法线方向为正。

扭矩符号

Cross-sectional Method

截面法确定内力,分三步:

  1. Cut
  2. Replace with Resultant force and moment
  3. Equilibrium eq.

Example 1-1

Example 1-1

取 m-m 截面的上半部分分析

Solution 1-1

  • 水平方向不受力,没有剪力
  • \(P\)\(O\) 点有力矩,有弯矩
  • 显然无扭矩

列平衡方程:

\[\begin{aligned} \sum F_y &= 0:P - N = 0 \\ \sum M_O &= 0:P \cdot a - M = 0 \end{aligned}\]

Stress

Motivating Question

同样的力,相同材料做的越细的杆件,越容易断。

如何反映力作用的程度

应力

\[\begin{equation} \tag{1-1} p = \lim_{\Delta A \to 0} \frac{\Delta F}{\Delta A} \end{equation}\]
  • \(p\): stress(应力)
  • \(\sigma\): normal stress(法向应力)
  • \(\tau\): shear stress(剪切应力)

应力是什么量?

  • \(\Delta F\): 矢量
  • \(\Delta A\): 矢量

矢量除以矢量??

\(\Longrightarrow\) 应力是张量

1.5 Deformation & Strain

线应变

\[\begin{equation} \tag{1-2} \varepsilon_m = \lim_{MN \to 0} \frac{M'N' - MN}{MN} = \lim_{\Delta x \to 0} \frac{\Delta s}{\Delta x} \end{equation}\]

切应变(角应变)

\[\begin{equation} \tag{1-3} \gamma = \lim_{MN \to 0, ML \to 0} \left( \frac{\pi}{2} - \angle L'M'N' \right) \end{equation}\]

alt text

显然应变是无量纲数

Example 1-2

Example 1-2

\(ab\) 边的平均应变

(1)线应变

\[ \varepsilon_m = \frac{a'b - ab}{ab} = \frac{0.025}{200} = 1.25 \times 10^{-4} \]

(2)切应变

\[ \gamma \approx \tan \gamma = \frac{0.025}{250} = 1 \times 10^{-4} \]

1.6 Basic Types of Deformation

graph TD
    A(Basic Deformations)
    B[Tension<br>Compression]
    C[Bending]
    D[Torsion]
    E[Shear]
    A --> B
    A --> C
    A --> D
    A --> E
  • Combined loading

1.7 Engineering Design Process