Chapter 1: Intro¶
Grading
- 期末 60%
- HW 25%
- 考勤 5%
- project 10%
平板、壳、杆件
- Leonardo da Vinci
- Galileo Galilei
- Isaac Newton
- Robert Hooke
- Leonhard Euler
- Stephen Timoshenko
- Principle objective of Mechanics of Materials
- Fundamental assumptions of deformable bodies
- External force, internal force, and cross-sectional method (截面法)
- Stress, displacement, deformation, and strain
- *Engineering design process
1.1 Objectives¶
graph LR
A(Deformable Bodies)
B[Tension Compression]
C[Bending]
D[Shear]
E[Torsion]
F[Structure Mechanics]
A --> B
A --> C
A --> D
A --> E
A --> F
Contents¶
To determine the stresses, strains, and displacements in the structures and their components subjected to external loads.
从理论上计算应力应变
大部分内容:实验先行 --> 理论
对象:杆件
Tasks¶
不同受力的杆有不同的名字:
- column: 拉压杆
- shaft: 扭转杆(轴)
- beam: 弯曲杆(梁)
分析:
- normal stress
- shear stress
解决:deflection problem
- Strength: Ability to resist fracture or materials do not collapse under large plastic deformation. \(\Longrightarrow\) 抵抗破坏的能力
- Rigidity: Ability to resist deformation. \(\Longrightarrow\) 抵抗变形的能力
- Stability: Ability to keep equilibrium configuration. \(\Longrightarrow\) 抵抗失稳的能力
压杆失稳
压杆的两头,杆弯曲变形
其它性能:
抗撞性能(controlled deceleration)
1.2 Fundamental Assumptions¶
- Continuity: 杆件是连续的,没有裂纹、孔洞
- Homogeneity: 杆件是均匀的
- Isotropy: 杆件是各向同性的
- Small deformation: 小变形假设
微观上来看,没有材料满足这些假设
1.3 External Force¶
Acting modes¶
力的作用方式:
- Surface force(面力)
- distribution force (力作用的面积和杆件大小同个数量级)
- concentration force
- Body force
- self-weight
- inertia force
Loading vs. Time¶
载荷是否变化:
- Static load
- Dynamic load
- Alternating load
- impact load
1.4 Internal Force & Stress¶
Internal Force¶
graph LR
A[External Force]
B[Relative displacement]
C[Interacting force<br>(Internal force)]
A --> B
B --> C
内力由外力引起
Characteristics¶
- Continuously distributed force
- Equilibrium forces with external forces
Components¶
- Normal
- Shear
- \(F_N\): normal force(法向)
- \(F_Q\): shear force(剪切)
- \(M_x\): torsion(扭矩)
- \(M_B\): bending moment(弯矩)
Sign Rule¶
At the same position, the internal forces on both side cross-sections possess the same sign.
法向力
拉为正,压为负。
剪力
对其内部的任意一点取矩,顺时针为正,逆时针为负。
弯矩
凸朝下为正,凸朝上为负。
扭矩
右手螺旋大拇指指向外法线方向为正。
Cross-sectional Method¶
截面法确定内力,分三步:
- Cut
- Replace with Resultant force and moment
- Equilibrium eq.
Example 1-1
取 m-m 截面的上半部分分析
- 水平方向不受力,没有剪力
- \(P\) 对 \(O\) 点有力矩,有弯矩
- 显然无扭矩
列平衡方程:
\[\begin{aligned} \sum F_y &= 0:P - N = 0 \\ \sum M_O &= 0:P \cdot a - M = 0 \end{aligned}\]
Stress¶
Motivating Question
同样的力,相同材料做的越细的杆件,越容易断。
如何反映力作用的程度 ?
\[\begin{equation} \tag{1-1} p = \lim_{\Delta A \to 0} \frac{\Delta F}{\Delta A} \end{equation}\]
- \(p\): stress(应力)
- \(\sigma\): normal stress(法向应力)
- \(\tau\): shear stress(剪切应力)
应力是什么量?
- \(\Delta F\): 矢量
- \(\Delta A\): 矢量
矢量除以矢量??
\(\Longrightarrow\) 应力是张量
1.5 Deformation & Strain¶
线应变
\[\begin{equation} \tag{1-2} \varepsilon_m = \lim_{MN \to 0} \frac{M'N' - MN}{MN} = \lim_{\Delta x \to 0} \frac{\Delta s}{\Delta x} \end{equation}\]
切应变(角应变)
\[\begin{equation} \tag{1-3} \gamma = \lim_{MN \to 0, ML \to 0} \left( \frac{\pi}{2} - \angle L'M'N' \right) \end{equation}\]
显然应变是无量纲数
Example 1-2
求 \(ab\) 边的平均应变
(1)线应变
\[ \varepsilon_m = \frac{a'b - ab}{ab} = \frac{0.025}{200} = 1.25 \times 10^{-4} \]
(2)切应变
\[ \gamma \approx \tan \gamma = \frac{0.025}{250} = 1 \times 10^{-4} \]
1.6 Basic Types of Deformation¶
graph TD
A(Basic Deformations)
B[Tension<br>Compression]
C[Bending]
D[Torsion]
E[Shear]
A --> B
A --> C
A --> D
A --> E
- Combined loading