Chapter 11: Alternating Stress¶
11.1 Introduction¶
Practical examples¶
- 齿轮
- 只有啮合的时候有应力,周期性脉冲
- 火车车轴
- 盯住某一点看,\(y = r \sin(\omega t)\),弯曲应力是周期变化的
- 简支梁上放着旋转的偏心轮
Concepts¶
- Alternating stress
- Fatigue failure
- Mechanism of fatigue failure
graph LR
A[Crack nucleation] --> B[Crack extension]
B --> C[Fatigue crack]
C --> D[Fracture]
11.2 Alternating Stress¶
- The cycle characteristic
\[ r = \frac{\sigma_{\min}}{\sigma_{\max}} \]
- The mean stress \(\sigma_m\)
- The stress amplitude \(\sigma_a\)
- Symmetrical cycle
\[ r = -1, \sigma_m = 0, \sigma_a = \sigma_{\max} \]
- Pulsant cycle
\[ r = 0, \sigma_m = \sigma_a = \frac{1}{2}\sigma_{\max} \]
- Static stress
\[ r = 1, \sigma_a = 0, \sigma_m = \sigma \]
- Asymmetrical cycle = Symmetrical cycle + Static stress
11.3 Determination of Fatigue Strength Limit¶
Fatigue Strength Limit(持久极限):The index of resistance to failure under symmetrical cyclic loading.
\(S - N\) Curve
- \(S\): Stress
- \(N\): Number of cycles to failure
\(N > 10^7 \sim 10^8\) 时,认为不会发生疲劳断裂。此时的应力记作 \(\sigma_{-1}\)
11.4 Fatigue Strength Limit¶
Effect of stress concentration¶
Effect of size¶
\[ \varepsilon_{\sigma} = \]
Effect of surface finish¶
\[ \beta = \frac{(\sigma_{-1})_{\beta}}{\sigma_{-1}} \]
- \(\beta\): surface quality coefficient
- \(\sigma_{-1}\): endurance limit for ground specimen
- \((\sigma_{-1})_{\beta}\): endurance limit for other specimens
11.5 Fatigue Strength Calculation Under Symmetrical Cycle¶
- Fatigue strength condition
\[ \sigma_{\max} \leq \left[\sigma_{-1}\right] = \frac{\sigma_{-1}^0}{n} = \frac{\varepsilon_{\sigma} \beta}{nK_{\sigma}}\sigma_{-1} \]
- \(\varepsilon_{\sigma}\): size coefficient 尺寸因数
- \(K_{\sigma}\): stress concentration factor 有效应力集中因数
- \(\beta\): surface quality coefficient 表面质量因数
- \(n\): safety factor
Another form:
\[ n_{\sigma} = \frac{\sigma_{-1}^0}{\sigma_{\max}} = \frac{\varepsilon_{\sigma} \beta}{K_{\sigma}\sigma_{\max}}\sigma_{-1} \geq n \]
- \(n_{\sigma}\): 实际有效的安全因数
11.6 Endurance Limit Diagram¶
- \(\sigma_r\): endurance limit of unsymmetrical cycle
- \(\sigma_{-1}\): symmetrical cycle
- \(\sigma_0\): pulsant cycle
- \(\sigma_{0.3}\)
\[ \left. \begin{aligned} \sigma_m &= \frac{\sigma_{\max} + \sigma_{\min}}{2} = \frac{1 + r}{2}\sigma_{\max} \\ \sigma_a &= \frac{\sigma_{\max} - \sigma_{\min}}{2} = \frac{1 - r}{2}\sigma_{\max} \end{aligned} \right\} \implies \tan \alpha = \frac{\sigma_a}{\sigma_m} = \frac{1 +r}{1 - r} = \text{const.} \]
Endurance limit diagram \(\sigma_a\) vs. \(\sigma_m\)
11.7 Fatigue Strength Calculation Under Asymmetrical Cycle¶
Tests show that stress concentration, size and surface finish of members have influence only on stress amplitude \(\sigma_a\), not on mean stress \(\sigma_m\).
In the endurance limit diagram, \(\alpha_1 \geq \alpha\)
\[ \begin{aligned} \tan \alpha_1 &= \frac{\frac{\varepsilon_{\sigma} \beta}{K_{\sigma}}\sigma_{-1} - n\sigma_a}{n\sigma_m} \\ \tan \alpha &= \frac{\frac{\varepsilon_{\sigma} \beta}{K_{\sigma}}\left(\sigma_{-1} - \frac{\sigma_0}{2}\right)}{\frac{\sigma_0}{2}} \end{aligned} \]
Let \(\psi_{\sigma} = \frac{\sigma_{-1} - \sigma_0 / 2}{\sigma_0 / 2}\), then the actual safety factor is
\[ n_{\sigma} = \frac{\sigma_{-1}}{\frac{K_{\sigma}}{\varepsilon_{\sigma} \beta}\sigma_a + \psi_{\sigma} \sigma_m} \geq n \]
which is the fatigue strength condition under asymmetrical cycle.
11.8 Fatigue Strength Calculation Under Combined Bending and Torsion¶
第四强度理论
\[ \sqrt{\sigma^2 + 3\tau^2} \leq \sigma_s \overset{\tau_s = \sigma_s / \sqrt{3}}{\longrightarrow} \left(\frac{\sigma}{\sigma_s}\right)^2 + \left(\frac{\tau}{\tau_s}\right)^2 \leq 1 \]
At critical point, provided safety factor \(n\):
\[ \left(\frac{n\sigma}{\frac{\varepsilon_{\sigma} \beta}{K_{\sigma}}\sigma_{-1}}\right)^2 + \left(\frac{n\tau}{\frac{\varepsilon_{\tau} \beta}{K_{\tau}}\tau_{-1}}\right)^2 \leq 1 \implies \left(\frac{n}{n_{\sigma}}\right)^2 + \left(\frac{n}{n_{\tau}}\right)^2 \leq 1 \]
i.e.
\[ n \leq \frac{n_{\sigma} n_{\tau}}{\sqrt{n_{\sigma}^2 + n_{\tau}^2}} = n_{\sigma \tau} \]
11.9 Practical Measurements for Preventing Fatigue Failure¶
- 倒角尽可能大,避免应力集中
- Improve the quality of machining. 提高表面加工质量,避免磕碰
- Increasing the strength of surface. 提高表面强度