Chapter 13: Energy Methods¶
13.1 Introduction¶
For solid deformable bodies under static loads,
\[ V_{\varepsilon} = W \]
Notes:
- 线弹性范围内,静载荷
- 用来求解静不定结构
13.2 Strain Energy¶
应变能¶
- 轴向拉压
\[ V_{\varepsilon} = \frac{F^2 l}{2E A} = \int_l \frac{F^2(x) \mathrm{d}x}{2E A} \]
应变能密度
\[ v_{\varepsilon} = \frac{1}{2} \sigma \varepsilon \]
- 纯剪切
\[ v_{\varepsilon} = \frac{\tau^2}{2G} = \frac{1}{2} \tau \gamma \]
- 扭转
扭转角 \(\varphi\) 与扭矩 \(M_{\text{e}}\) 之间呈线性关系:
\[ \varphi = \frac{M_{\text{e}} l}{G I_p} \]
扭转应变能:
\[ V_{\varepsilon} = \frac{M_{\text{e}}^2 l}{2 G I_p} = \int_l \frac{T^2(x) \mathrm{d}x}{2 G I_p} \]
- 弯曲
应变能
\[ V_{\varepsilon} = \frac{1}{2} M_{\text{e}} \theta = \int_l \frac{M^2(x) \mathrm{d}x}{2 E I} \]
综上,应变能可以统一写成 $$ V_{\varepsilon} = \frac{1}{2} F \delta $$
\(F\) 为广义力,\(\delta\) 为广义位移。
Castigliano's Theorem
Virtual Work Principle¶
-
Virtual displacement \(v^*(x)\)
-
B.C.
- Continuous
- Small deformation
Virtual work done by external forces:
\[ W^*_{\text{ext}} = F_1 v^*_1 + F_2 v^*_2 + \ldots + \int_l q(x) v^*(x) \mathrm{d}x + \ldots \]
Virtual work done by internal forces (Virtual strain energy):
\[ W^*_{\text{int}} = \int F_{\text{N}} \mathrm{d}(\Delta l)^* + \int M \mathrm{d}\theta^* + \int F_{\text{S}} \mathrm{d}\lambda^* + \int T \mathrm{d}\varphi^* \]
\[ W^*_{\text{ext}} = W^*_{\text{int}} \]
外力在虚位移上做的功等于内力在虚变形上做的功。
Example 9
A 点位移为 \(v\),则三根杆的伸长量为
\[ \Delta l_1 = v, \quad \Delta l_2 = \Delta l_3 = v\cos\alpha \]
由 Hooke 定律:
\[ F_1 = \frac{E A}{l} \Delta l_1, \quad F_2 = F_3 = \frac{E A}{l} \Delta l_2 \]
假设 A 处的虚位移为 \(\delta v\),则外力做的虚功为
\[ W^*_{\text{ext}} = P \delta v \]
虚应变能
\[ W^*_{\text{int}} = \int F_{\text{N}1} \mathrm{d}(\Delta l_1)^* + \int F_{\text{N}2} \mathrm{d}(\Delta l_2)^* + \int F_{\text{N}3} \mathrm{d}(\Delta l_3)^* \]
Mohr's Theorem¶
实际的变形视作虚拟的,单位载荷 \(1\) 和实际位移 \(\Delta\)