跳转至

Chapter 2: Tension, Compression & Direct Shear

2.1 Axial Tension and Compression

Historical perspective

Before Industrial Revolution:

  • Timber, Brick, & Mortar
  • \(\Rightarrow\) Compressive Loads

After Industrial Revolution:

  • Metals, Polymers, Plastics, etc
  • \(\Rightarrow\) Tensile Loads

Internal force on cross section

alt text

  • Force feature: 外力沿着轴线方向
  • Deformation feature: 杆件沿轴线方向拉伸或压缩

Axial force diagram(轴力图)

Example 2-1

Example 2-1

切两个截面 1-1 和 2-2

Solution 2-1

轴力图:

轴力图

2.2 Internal Force & Stress

Stress on Cross Section

alt text

\[N = \int_A \sigma \, dA\]

Plane cross-section assumption(平截面假设)

If the cross section is initially plane, it remains plane after deformation and perpendicular to the axial line.

在截面处,应力分布是均匀的,所以有

\[\sigma = \mathrm{const.}\]

由平截面假设,可以得到

\[\begin{equation} \tag{2-1} \sigma = \frac{N}{A} \end{equation}\]

\(N(x), A(x)\) 变化不剧烈,则下式也成立:

\[\sigma(x) = \frac{N(x)}{A(x)}\]

Saint-Venant’s Principle

如果作用在弹性体一小块表面上的力被静力等效力系替代,这种替换仅仅会使局部表面产生显著的应力变化,而在比应力变化表面的线性尺寸更远的地方,其影响可忽略不计。

影响的区域:圣维南区域

alt text

Example 2-2

Example 2-2

Internal Force on Inclined Section

\(A_{\alpha}\) 为斜截面面积,\(P_{\alpha}\) 为斜截面上的内力

\[A_{\alpha} = \frac{A}{\cos \alpha}, \quad P_{\alpha} = P\]

得到

\[p_{\alpha} = \frac{P_{\alpha}}{A_{\alpha}} = \frac{P}{A} \cos \alpha = \sigma \cos \alpha\]

正应力 \(\sigma_{\alpha} = p_{\alpha} \cos \alpha = \sigma \cos^2 \alpha\),剪应力 \(\tau_{\alpha} = p_{\alpha} \sin \alpha = \sigma \sin \alpha \cos \alpha\)

Discussions:

  1. \(\alpha = 0\)\(\max \sigma_{\alpha} = \sigma\)
  2. \(\alpha = 45^{\circ}\)\(\max \tau_{\alpha} = \frac{\sigma}{2}\)
  3. \(\alpha = 90^{\circ}\)\(\sigma_{\alpha} = \tau_{\alpha} = 0\)自由面

2.3 Mechanical Properties of Materials Under Tension/Compression

  • Strength
  • Hardness
  • Toughness(韧性)
  • Elasticity
  • Plasticity
  • Brittleness(脆性)
  • Ductility, Malleability(延展性)

应力和应变:

\[\sigma = \frac{P}{A}, \quad \varepsilon = \frac{\Delta l}{l}\]

alt text

Elastic Range

  • Hooke's Law:
\[\sigma = E \varepsilon\]

\(E\): Elastic Modulus / Young's Modulus(弹性模量/杨氏模量)

属于本构关系

  • Proportional Limit \(\sigma_{\mathrm{p}}\)
  • Elastic Limit \(\sigma_{\mathrm{e}}\)

Yielding Range

  1. Upper yielding limit: unstable
  2. Lower yielding limit: stable \(\sigma_{\mathrm{s}}\) reflects the strength of materials.(屈服应力)
  3. Yielding is related to the maximum sheering stress.

材料进入屈服即失效。

Hardening Range

在 d 处卸载,应力退为零,但应变不为零,从弹性转变为了塑性

  • Ultimate Strength \(\sigma_{\mathrm{b}}\)

Necking Range

颈缩:几何缺陷导致失稳

f 处断裂

Elongation & Reduction of Area

  1. Residual relative elongation \(\delta = \frac{l - l_0}{l_0}\)
  2. \(\delta < 5\%\):Brittle materials
  3. \(\delta > 5\%\):Ductile materials
  4. Permanent relative reduction of area \(\psi = \frac{A_0 - A}{A_0}\)

Unloading and Cold-hardening

  1. d 处卸载,斜率也为 \(E\)
  2. 重新加载,和卸载的曲线重合,但是强度提高(\(\sigma_{\mathrm{p}}\) 增大)

工艺:冷硬化

Mechanical Properties of other Materials in Tension

  • 对于塑性材料,若没有明显的屈服,工程上约定 \(\sigma_{\mathrm{p0.2}}\)(offset strain = 0.2)为屈服应力 alt text
  • 对于脆性材料,线性部分不明显,用割线代替 alt text

Mechanical Properties of Materials under Compression

alt text

2.4 Criterion of Strength Design

Safety Factor and Allowable Stress

  • Failure
    • Ductile: Plastic deformation
    • Brittle: Fracture
  • Limit stress \(\sigma_{\mathrm{u}}\)
    • Ducitle: \(\sigma_{\mathrm{s}}\)
    • Brittle: \(\sigma_{\mathrm{b}}\)
  • Allowable stress \(\left[\sigma \right] = \frac{\sigma_{\mathrm{u}}}{n}\)(许用应力)
    • \(\frac{\sigma_{\mathrm{s}}}{n_{\mathrm{s}}}\): Ductile, \(n_{\mathrm{s}} = 1.2 \sim 2.5\)
    • \(\frac{\sigma_{\mathrm{b}}}{n_{\mathrm{b}}}\): Brittle, \(n_{\mathrm{b}} = 2 \sim 3.5\)

Criterion of Strength Design

\[\sigma = \frac{F_N}{A} \leq \left[\sigma \right]\]
  • Strength checking: \(\sigma \leq \left[\sigma \right]\)
  • Cross-section designing: \(A \geq \frac{F_N}{\left[\sigma \right]}\)
  • Allowable load determining: \(F_N \leq A \left[\sigma \right]\)

How to determine the safety factor?

  • 用途越关键,安全系数越大(保守)
  • 辅助作用,安全系数较小(经济)

Example 2-3

alt text

Example 2-4

alt text

Example 2-5

alt text

alt text

注意图中的 ┘└ 记号,表示有两块角钢!槽钢同理也有两块。横截面积要 \(\times 2\)

2.5 Deformation of Bar under Tension and Compression

alt text

Axial Strain

\[ \begin{aligned} \varepsilon &= \frac{\Delta l}{l} \\ \sigma &= E \varepsilon \\ \sigma &= \frac{F_N}{A} \\[2ex] \Rightarrow \Delta l &= \frac{F_N l}{E A} \end{aligned} \]
  • \(EA\): tensile rigidity(拉伸刚度)

可以看到,这就是胡克定律。

Lateral Strain

\[ \Delta b = b_1 - b, \, \varepsilon' = \frac{\Delta b}{b} \]

在线弹性范围内,\(\varepsilon' / \varepsilon = \mathrm{const.}\) 称为泊松比 \(\mu\)

\[\mu = -\frac{\varepsilon'}{\varepsilon}\]

从热力学上可以证明,\(\mu \in (-1, 0.5)\)

  • \(\mu = 0.5\):变形后总体积不变
  • \(\mu < 0\):材料拉长,横截面还变大(负泊松比材料)

For steel, \(E \sim 200 \text{ GPa}\), \(\, \mu \sim 0.3\)

alt text

找两根铰接杆变形后的交点

alt text

  • \(C'\):精确的交点
  • \(C''\):近似的交点

Example 2-6

alt text

alt text

Non-uniform bars

  • 横截面积分段变化

alt text

\(\(\Delta l = \sum \Delta l_i = \sum \frac{N_i l_i}{E_i A_i}\)\)

通常情况下轴力 \(N_i\) 相同 - 横截面积连续变化

alt text

\(\(\Delta l = \int \frac{N(x) dx}{E A(x)}\)\)

2.6 Strain Energy of Bar under Tension and Compression

应变能:物体在外力作用下发生形变时,吸收的能量

\[dW = F d(\Delta l)\]
\[ \begin{aligned} U = W = \int_0^{\Delta l} F d(\Delta l) &= \int_0^{\Delta l} \frac{EA \Delta l}{l} d(\Delta l) = \frac{1}{2} F \Delta l \\ &= \frac{F^2 l}{2EA} = \frac{EA (\Delta l)^2}{2l} \end{aligned} \]

应变能密度

\[u = \frac{U}{V} = \frac{P \Delta /2}{Al} = \frac{1}{2}\sigma \varepsilon = \frac{1}{2}E \varepsilon^2 = \frac{\sigma^2}{2E}\]

2.7 Statically Indeterminate Structures

约束反力多于独立平衡方程数,需要增加几何变形约束方程和本构方程求解。

静不定结构:结构的强度和刚度均得到提高

求解:

  • Equilibrium equation
  • Constitutive equation
  • Compatibility equation
    • 变形协调方程,几何约束