跳转至

Chapter 3: Torsion

3.1 Concept

  • Shaft(轴):torsion is its primary deformation.
  • Torsion(扭转):扭矩作用下的变形,扭矩作用面与轴线垂直
  • Angle of twist(扭转角 \(\varphi\)):一个横截面相对于另一个横截面转过的角度
  • Shearing strain(切应变 \(\gamma\)):The change of a right angle between two straight lines.

Examples: - Steering rod - 丝锥

3.2 External/Internal Torque of A Driving Shaft

External torque of a driving shaft

\(W = Pt = m \cdot \omega \cdot t\)

\[\begin{equation} \tag{3-1} m = 9549 \cdot \frac{P}{n} \quad\mathrm{(N \cdot m)} \end{equation}\]
  • \(P\): power(功率,kW)
  • \(n\): speed(转速,r/min 或 rpm)

Internal torque and its diagram

Sign convention: 右手螺旋定则(右手拇指指向外法线正方向为正)

3.3 Torsion of the Thin-Walled Hollow Shafts

壁厚 \(t < 0.1D\)

Experiment

Before deformation:

alt text

After deformation:

alt text

  • The circumference lines do not change
  • The longitudinal lines are changed into slants

Conclusions: - 圆周线不变 - 所有纵线转过的角度都是 \(\gamma\) - 所有正方形变形成相同的平行四边形

取一个小体积元

alt text

  • 没有正应力,只有剪应力 \(\tau\)
  • 在同一个截面上,剪应力 \(\tau\) 处处相等(因为壁很薄,沿半径方向 \(z\) 的变化忽略不计),垂直于半径方向

Magnitude of the shear stress \(\tau\)

alt text

内力矩

\[\int_A \tau \cdot dA \cdot r_0 = T\]

\(\tau, r_0\) 为常数,得到

\[\tau \cdot r_0 \cdot 2\pi r_0 t = T\]

\[\begin{equation} \tag{3-2} \tau = \frac{T}{2\pi r_0^2 t} = \frac{T}{2A_0 t} \end{equation}\]

Theorem of conjugate shearing stresses

切应力互等定理

alt text

\[ \begin{aligned} \sum m_z &= 0 \\ \tau t dx \cdot dy &= \tau' t dy \cdot dx \end{aligned} \]

\[\boxed{\tau = \tau'}\]

Hooke's law of shear

alt text

几何关系:\(\gamma l = r \varphi\)

结合式 \eqref{3-2} 得到

3.5 Deformation of a Circular Shaft

Deformation in torsion

From the formula

\[\frac{d\varphi}{dx} = \frac{T}{GI_p}\]
\[\varphi = \int d\varphi = \int_0^l \frac{T}{GI_p} dx \overset{T = \text{const.}}{=} \frac{Tl}{GI_p}\]

Angle of twist per unit length \(\theta\)

\[\theta = \frac{d\varphi}{dx} = \frac{T}{GI_p}\]

\(GI_p\) 反映了材料抵抗扭转的能力(扭转刚度)

Rigidity Check

3.6 Statically Indeterminate Problems of Round Shafts

3.7 Stress & Deformation in Springs

\[\tau_{\max} = \tau_Q + \tau_T = \frac{Q}{A} + \frac{T}{W_t} = \frac{PD/2}{\pi d^3/16} + \frac{P}{\pi d^2/4} = \left(\frac{d}{2D} + 1\right) \frac{8PD}{\pi d^3}\]

3.8 Stress & Deformation of Non-Circular Shafts

alt text

  1. Free torsion: Warping of each cross section in torsion is not restricted and the magnitude is the same.(每个横截面翘曲的程度相同)
  2. Restricted torsion: 翘曲程度不同
  3. Shearing stress on the section of the rectangular rod
  4. 角点:切应力为0
  5. 形心
  6. 边中点:最大切应力
\[\tau_{\max} = \frac{|T|_{\max}}{W_t}, \quad W_t = \alpha hb^2\]

3.9 Stress of Opened and Closed Thin-Walled Rods

开口比闭口的更容易变形

  • 开口

alt text

中心线上切应力为0

  • 闭口

alt text

切应力均匀分布

\[T = \oint (\tau \delta ds) \rho = 2 \tau \delta \oint \frac{1}{2} \rho ds = 2 \tau \delta A\]

Example 3-8

alt text