跳转至

Chapter 5: Stresses in Bending

5.1 Pure Bending

Pure Bending

横轴面上只有弯矩 \(M\),没有剪力 \(Q\)

Experiment

alt text

  • Lateral lines remain straight and rotate
  • longitudinal straight lines change into curves and are still normal to the lateral lines

Concepts

  1. Neutral layer:中性面
  2. Neutral axis:中性轴

Hypothesis

  1. Hypothesis of plane section: The cross sections remain planes and only rotate through some angles around their neutral axes after deformation. 横截面变形后仍为平面。
  2. No normal stress between longitudinal fibers. 纵向层纤维之间无正应力。

5.2 Normal Stress On The Cross Sections Of The Beam In Pure Bending

  1. Geometric eq.

alt text

\(OO_1\) 为中性面。

\[ \begin{aligned} \varepsilon_x &= \frac{A_1 B_1 - AB}{AB} = \frac{A_1 B_1 - OO_1}{OO_1} \\ &= \frac{(\rho + y)d\theta - \rho d\theta}{\rho d\theta} = \frac{y}{\rho} \end{aligned} \]

中性面以下受拉,为正;上方受压,为负。

  1. Physical relation

纵向纤维之间无正应力,每一层相当于拉压杆

\[ \begin{equation} \tag{2} \sigma_x = E\varepsilon_x = \frac{Ey}{\rho} \end{equation} \]
  1. Static relations
\[\sum N_x = \int_A \sigma dA = \int_A \frac{Ey}{\rho} dA = \frac{E}{\rho} \cdot \underset{\text{静矩, Static moment}}{\boxed{\int_A y\,dA}} = \frac{ES_z}{\rho} = 0\]

\(\Longrightarrow S_z = 0\), so \(z\)-axis (neutral axis) is through the center of the section. 中性轴过形心。

\[\sum M_y = \int_A (\sigma dA)z = \int_A \frac{Eyz}{\rho} dA = \frac{E}{\rho} \cdot \underset{\text{惯性矩}}{\boxed{\int_A yz\,dA}} = \underset{\text{(Symmetric plane)}}{\frac{E I_{yz}}{\rho} \equiv 0}\]
\[\sum M_z = \int_A (\sigma dA)y = \int_A \frac{Ey^2}{\rho} dA = \frac{E}{\rho} \int_A y^2\,dA = \frac{E I_{z}}{\rho} = M\]

得到

\[\begin{equation} \tag{3} \frac{1}{\rho} = \frac{M}{E I_z} \end{equation}\]
  • \(E I_z\) 为梁的抗弯刚度(flexural rigidity)
\[\begin{equation} \tag{4} \sigma_x = \frac{My}{I_z} \end{equation}\]

5.3 Normal Stress On The Cross Sections Of The Beam In Nonuniform Bending

5.4 Shearing Stress On The Cross Sections Of The Beam

Beam with rectangular sections

两个假设:

  • 剪力和切应力平行
  • 在横截面上,离中轴线距离相同的位置,切应力相同

  • 梁上截取一小段 \(\mathrm{d}x\) alt text

  • \(y\) 方向截取小方块(Fig. b 中蓝色部分) alt text
\[\sum X = N_2 - N_1 - \tau_1 b\, dx = 0\]
  • \(N_1\)\(\sigma\) 正应力的合力
\[ \left \{ \begin{aligned} N_1 &= \int_{A^*} \sigma\, dA = \frac{M}{I_z} \int_{A^*} y\, dA = \frac{M S_z^*}{I_z} \\ N_2 &= \frac{(M + dM)S_z^*}{I_z} \\ \tau_1 &= \frac{dM}{dx} \frac{S_z^*}{b I_z} = \frac{Q S_z^*}{b I_z} \end{aligned} \right. \]

From the theory of the conjugate shearing stress(切应力互等定理),

\[\tau = \tau_1 = \frac{Q S_z^*}{b I_z}\]
\[S_z^* = y_c^* A^* = \frac{\frac{h}{2}+y}{2} b (\frac{h}{2} - y) = \frac{b}{2} (\frac{h^2}{4} - y^2)\]

So

\[\tau = \frac{Q}{2 I_z} (\frac{h^2}{4} - y^2)\]
\[\tau_{\max} = \tau|_{y = 0} = \frac{3}{2} \frac{Q}{A} = \frac{3}{2} \bar{\tau}\]

剪应力的大小分布是抛物线,最大剪应力为平均剪应力的 \(1.5\) 倍。

Beam with other shapes of sections

I-section(工字梁)

\[\tau_{\max} \approx \frac{Q}{A_f}\]
  • \(A_f\) 为腹板的面积

  • 翼缘(flange):几乎只承受正应力

  • 腹板(web):几乎只承受铅垂剪应力

Circular section

\[\tau_{\max} = \frac{4}{3} \frac{Q}{A} = \frac{4}{3} \bar{\tau}\]

Thin-walled cirque

\[\tau_{\max} = 2 \frac{Q}{A} = 2 \bar{\tau}\]

5.5 Strength Conditions Of \(\sigma\) And \(\tau\)

\[\begin{equation} \tag{5} \sigma_{\max} = \frac{M_{\max}}{W_z} \leq [\sigma], \quad \tau_{\max} = \frac{Q_{\max} S_{z\max}^*}{b I_z} \leq [\tau] \end{equation}\]

同时有正应力和切应力时,上面的强度条件可能会失效。第七章将介绍新的强度条件。

Appendix I: Geometrical Properties Of Plane Areas

I.1 Intro

  • Tension \(\(\sigma = \frac{N}{A}\)\)
  • Torsion:

I.2 Centroid & Static Moment

\[\begin{aligned} \bar{y} &= \frac{\int y\, dA}{A} \\ \bar{z} &= \frac{\int z\, dA}{A} \\ S_z &= \int y\, dA \\ S_y &= \int z\, dA \end{aligned}\]

Notes

\[S_z = \bar{y} A, \, S_y = \bar{z} A\]
\[S_y = 0, \, S_z = 0 \iff \bar{z} = 0, \, \bar{y} = 0\]
  • Centroid and static moment of the composite area
\[S_z = \int_A y\, dA = \sum_i \int_{A_i} y\, dA_i = \sum_i A_i \bar{y}_i\]

I.3 Moment of Inertia of an Area

  • 惯性积(Product of inertia)

  • 极惯性矩(Polar moment of inertia)

I.4 Parallel Axis Theorem