Chapter 7: Stress and Strain Analysis & Strength Theory¶
7.1 Introduction: Stress State¶
为什么要做应力应变分析?
同一个位置,作不同的截面,应力值不同。但应该是同一个状态!
Combined stresses¶
- 主平面(Principal plane):剪应力为0
- 主应力(Principal stress):主平面上的正应力
- 单相应力状态(Uniaxial stress state):只有一个主应力不为0
- 二相应力状态(Biaxial stress state):有两个主应力不为0
- 三相应力状态(Triaxial stress state):有三个主应力不为0
三者代数值关系(含正负号): $$ \sigma_1 \geq \sigma_2 \geq \sigma_3 $$
7.2 Examples of State of Biaxial and Triaxial Stresses¶
7.3 Plane Stress State Analysis: Analytical Method¶
\(\tau_{xy}\):
- \(x\)(第一个下标):截面的外法线方向
- \(y\)(第二个下标):应力方向
\[ \begin{aligned} & \Sigma F_x = 0, \quad \sigma_{\alpha} \mathrm{d}A \cos \alpha + \tau_{\alpha} \mathrm{d}A \sin \alpha - \sigma_x \mathrm{d}A \cos \alpha + \tau_{yx} \mathrm{d}A \sin \alpha = 0 \\ & \Sigma F_y = 0, \quad \sigma_{\alpha} \mathrm{d}A \sin \alpha - \tau_{\alpha} \mathrm{d}A \cos \alpha - \sigma_y \mathrm{d}A \sin \alpha + \tau_{xy} \mathrm{d}A \cos \alpha = 0 \\ \end{aligned} \]
化简得
\[ \begin{aligned} \sigma_{\alpha} &= \sigma_x \cos^2 \alpha + \sigma_y \sin^2 \alpha - 2 \tau_{xy} \sin \alpha \cos \alpha \\ \tau_{\alpha} &= \sigma_x \sin \alpha \cos \alpha - \sigma_y \sin \alpha \cos \alpha + \tau_{xy} (\cos^2 \alpha - \sin^2 \alpha) \end{aligned} \]
即
\[ \begin{equation} \tag{7-1} \boxed{ \begin{aligned} \sigma_{\alpha} &= \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\alpha + \tau_{xy} \sin 2\alpha \\ \tau_{\alpha} &= \frac{\sigma_x - \sigma_y}{2} \sin 2\alpha + \tau_{xy} \cos 2\alpha \end{aligned} } \end{equation} \]
符号规定
- 正应力 \(\sigma\)
- \(\oplus\):拉
- \(\ominus\):压
- 切应力 \(\tau\)
- \(\oplus\):顺时针
- \(\ominus\):逆时针
- 角度 \(\alpha\)(法线与 \(x\) 轴的夹角)
- \(\oplus\):逆时针
- \(\ominus\):顺时针
Extremum of \(\sigma_{\alpha}\)¶
\[ \frac{\mathrm{d} \sigma_{\alpha}}{\mathrm{d} \alpha} = -2\left[\frac{\sigma_x - \sigma_y}{2} \sin 2\alpha + \tau_{xy} \cos 2\alpha\right] = 0 \implies \tan 2\alpha = -\frac{2\tau_{xy}}{\sigma_x - \sigma_y} \]
7.4 Plane Stress State Analysis: Mohr's Circle¶
\[ \left(\sigma_{\alpha} - \frac{\sigma_x + \sigma_y}{2}\right)^2 + \tau_{\alpha}^2 = \left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2 \]
- Radius \(R\):
\[ R = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2} \]
- Center \(C\):
\[ C = \left(\frac{\sigma_x + \sigma_y}{2}, 0\right) \]
7.5 State of Triaxial Stress¶
Stresses on the inclined plane¶
在微元体 \(\mathrm{d}x \mathrm{d}y \mathrm{d}z\) 内取一个斜截面。记 \(S\) 为合应力,斜截面法向量为 \(\vec{n} = (l, m, n) = (\cos \alpha, \cos \beta, \cos \gamma)\),则有平衡方程
\[ \left \{ \begin{aligned} \Sigma F_x = 0, \quad S_x \mathrm{d}A - \sigma_x \mathrm{d}A \cdot l - \tau_{yx} \mathrm{d}A \cdot m - \tau_{zx} \mathrm{d}A \cdot n &= 0 \\ \Sigma F_y = 0, \quad S_y \mathrm{d}A - \tau_{xy} \mathrm{d}A \cdot l - \sigma_y \mathrm{d}A \cdot m - \tau_{zy} \mathrm{d}A \cdot n &= 0 \\ \Sigma F_z = 0, \quad S_z \mathrm{d}A - \tau_{xz} \mathrm{d}A \cdot l - \tau_{yz} \mathrm{d}A \cdot m - \sigma_z \mathrm{d}A \cdot n &= 0 \end{aligned} \right. \]
得到
\[ \begin{equation} \tag{7-2} \begin{aligned} S_x &= \sigma_x l + \tau_{yx} m + \tau_{zx} n \\ S_y &= \tau_{xy} l + \sigma_y m + \tau_{zy} n \\ S_z &= \tau_{xz} l + \tau_{yz} m + \sigma_z n \end{aligned} \end{equation} \]
合应力向法向投影,
The principal stresses¶
7.8 Generalized Hooke's Law¶
广义胡克定律¶
轴向拉伸/压缩:\(\sigma = E\varepsilon\)
泊松比 \(\varepsilon' = -\mu \varepsilon\)
纯剪切:\(\tau = G\gamma\)
叠加原理条件:
- \(\sigma \leq \sigma_p, \tau \leq \tau_p\)
- 小变形
- 各向同性材料
\[ \begin{equation} \tag{Hooke's Law} \label{Hooke's Law} \boxed{ \begin{aligned} \varepsilon_x &= \frac{1}{E} \left[\sigma_x - \mu (\sigma_y + \sigma_z)\right] \\ \varepsilon_y &= \frac{1}{E} \left[\sigma_y - \mu (\sigma_x + \sigma_z)\right] \\ \varepsilon_z &= \frac{1}{E} \left[\sigma_z - \mu (\sigma_x + \sigma_y)\right] \\ \gamma_{xy} =& \frac{\tau_{xy}}{G}, \, \gamma_{xz} = \frac{\tau_{xz}}{G}, \, \gamma_{yz} = \frac{\tau_{yz}}{G} \end{aligned} } \end{equation} \]
The relative change in volume¶
变形前:\(V_0 = \mathrm{d}x \mathrm{d}y \mathrm{d}z\)
变形后:
\[ \begin{aligned} V &= (\mathrm{d}x + \varepsilon_1 \mathrm{d}x)(\mathrm{d}y + \varepsilon_2 \mathrm{d}y)(\mathrm{d}z + \varepsilon_3 \mathrm{d}z) \\ &= (1 + \varepsilon_1)(1 + \varepsilon_2)(1 + \varepsilon_3) \mathrm{d}x \mathrm{d}y \mathrm{d}z \end{aligned} \]
忽略应变的乘积项,得到
\[ V = (1 + \varepsilon_1 + \varepsilon_2 + \varepsilon_3) \mathrm{d}x \mathrm{d}y \mathrm{d}z \]
体应变(Volume strain):
\[ \theta = \frac{V - V_0}{V_0} = \varepsilon_1 + \varepsilon_2 + \varepsilon_3 \]
Discussion
- 结合 \eqref{Hooke's Law},有
\[ \theta = \varepsilon_1 + \varepsilon_2 + \varepsilon_3 = \frac{1 - 2\mu}{E} \left(\sigma_1 + \sigma_2 + \sigma_3\right) \]
当 \(\mu = 0.5\) 时,\(\theta = 0\),即不论外力如何变化,总体积不变。这种材料称为不可压缩材料(incompressible material),如橡胶。
- 令
7.10 Intro to Strength Theory¶
Two typical failure modes¶
- 塑性:屈服
- 脆性:断裂
Two types of resistance¶
- Resistance to rupture(\(\sigma_{\text{rupt}}\))
-
Resistance to shear(\(\tau_{\text{sh}}\))
-
Ductile:\(\sigma_{\text{rupt}} > \tau_{\text{sh}}\)
- Brittle:\(\sigma_{\text{rupt}} < \tau_{\text{sh}}\)
7.11 Four Practical Strength Theories¶
最大拉应力¶
最大正应变¶
\[ \varepsilon = \frac{1}{E} \left[\sigma - \mu (\sigma_1 + \sigma_2)\right] < \varepsilon_m \]
最大剪应力¶
单轴拉伸,\(\tau_{\max} = \frac{\sigma}{2}\)