跳转至

流体运动学

拉格朗日描述

质点系法:把流体看作

位置矢量 - 流体质点的运动方程

设某一流体质点在 \(t = t_0\) 时刻占据起始坐标 \((a,b,c)\),任意时刻 \(t\) 该质点运动到空间坐标 \((x,y,z)\),则

  • 流体质点的速度 \(\mathbf{V} = u \mathbf{i} + v \mathbf{j} + w \mathbf{k}\)
\[ \left \{ \begin{aligned} u &= \frac{\mathrm{d}x}{\mathrm{d}t} \\ v &= \frac{\mathrm{d}y}{\mathrm{d}t} \\ w &= \frac{\mathrm{d}z}{\mathrm{d}t} \end{aligned} \right. \]

问题

  1. 每个质点运动规律不同,难以跟踪
  2. 数学上存在难以克服的困难
  3. 实际上,不需要知道每个质点的运动情况

👎 工程上不采用

欧拉描述

流场法:考察空间每一点上的物理量及其变化。研究流体质点在通过某一空间点时流动参数随时间的变化规律。也称为空间点法。

  • 物理量在空间有一个分布,可随时间变化
  • 场描述

流体质点在任意时刻 \(t\) 通过固定空间点 \((x,y,z)\)

❗ 欧拉描述不能给出位移信息

拉格朗日描述与欧拉描述的关系

在某一时刻 \(t\),流体质点 \((a,b,c)\) 到达某一空间点 \((x,y,z)\)

Lagrange \(\to\) Euler

Lagrange 位移关系:\(\mathbf{r} = \mathbf{r}(a,b,c,t)\)

\[ \left \{ \begin{aligned} x &= x(a,b,c;t) \\ y &= y(a,b,c;t) \\ z &= z(a,b,c;t) \end{aligned} \right. \xrightarrow{\text{反解坐标关系}} \left \{ \begin{aligned} a &= a(x,y,z;t) \\ b &= b(x,y,z;t) \\ c &= c(x,y,z;t) \end{aligned} \right. \]

例子

已知拉格朗日描述

\[ \left \{ \begin{aligned} x &= a e^{t} \\ y &= b e^{-t} \\ \end{aligned} \right. \]

求速度的欧拉描述。


解:

\[ \left \{ \begin{aligned} u &= \frac{\partial x}{\partial t} = a e^{t} \\ v &= \frac{\partial y}{\partial t} = -b e^{-t} \end{aligned} \right. \]

反解坐标关系:

\[ \left \{ \begin{aligned} a &= x e^{-t} \\ b &= y e^{t} \\ \end{aligned} \right. \]

代入上式得

\[ \left \{ \begin{aligned} u &= x \\ v &= -y \end{aligned} \right. \]

Euler \(\to\) Lagrange

Euler 描述无位移关系,需先由 Euler 速度表达式,通过积分求得质点的位移函数。

例子

已知欧拉描述

\[ \left \{ \begin{aligned} u &= x \\ v &= -y \end{aligned} \right. \]

和初始条件 \(x = a, y = b\)。求速度的拉格朗日描述。


解:

\[ \left \{ \begin{aligned} \frac{\mathrm{d}x}{\mathrm{d}t} &= u = x \\ \frac{\mathrm{d}y}{\mathrm{d}t} &= v = -y \end{aligned} \right. \implies \left \{ \begin{aligned} x &= C_1 e^{t} \\ y &= C_2 e^{-t} \end{aligned} \right. \]

由初始条件 \(x = a, y = b\) 可得 \(C_1 = a, C_2 = b\). 故

\[ \left \{ \begin{aligned} x &= a e^{t} \\ y &= b e^{-t} \end{aligned} \right. \]
Lagrangian 描述 Eulerian 描述
描述物理量的随体变化 描述物理量的随点变化

Euler 描述中质点加速度的推导

定义流速场 \(V = V(x,y,z;t)\)

\[ \begin{aligned} \frac{\mathrm{D} \vec{V}}{\mathrm{D} t} &= \lim_{\Delta t \to 0} \frac{\vec{V}(M', t + \Delta t) - \vec{V}(M, t)}{\Delta t} \\ &= \underset{\text{场的非定常性}}{\boxed{\lim_{\Delta t \to 0} \frac{\vec{V}(M', t + \Delta t) - \vec{V}(M', t)}{\Delta t}}} + \textcolor{tomato}{\underset{\text{场的不均匀性}}{\boxed{\lim_{\Delta t \to 0} \frac{\vec{V}(M', t) - \vec{V}(M, t)}{\Delta t}}}} \\ \end{aligned} \]

时变加速度+位变加速度

全导数、物质导数

\[ \mathbf{a} = \frac{\mathrm{d}\mathbf{V}}{\mathrm{d}t} = \mathbf{i} \frac{\mathrm{d}u}{\mathrm{d}t} + \mathbf{j} \frac{\mathrm{d}v}{\mathrm{d}t} + \mathbf{k} \frac{\mathrm{d}w}{\mathrm{d}t} \]
\[ \begin{aligned} \frac{\mathrm{d}u(x,y,z;t)}{\mathrm{d}t} &= \frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} \frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial u}{\partial y} \frac{\mathrm{d}y}{\mathrm{d}t} + \frac{\partial u}{\partial z} \frac{\mathrm{d}z}{\mathrm{d}t} \\ &= \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} \\ &= \frac{\partial u}{\partial t} + (\mathbf{V} \cdot \nabla) u \end{aligned} \]

迹线(Pathline)

迹线是指同一流体质点不同时刻流经的空间轨迹,即流体质点的运动轨迹。显然,这是由 Lagrange 描述引出的概念。

\[ \frac{\mathrm{d}x}{u(x,y,z;t)} = \frac{\mathrm{d}y}{v(x,y,z;t)} = \frac{\mathrm{d}z}{w(x,y,z;t)} = \mathrm{d}t \]

求解出 \(x(t), y(t), z(t)\) 即可

流线(Streamline)

流线是流场中任一时刻的一条几何曲线,其上各点的切线方向与该点的流速方向相同。流线是由 Euler 描述引出的概念。

\[ \frac{\mathrm{d}x}{u(x,y,z;t)} = \frac{\mathrm{d}y}{v(x,y,z;t)} = \frac{\mathrm{d}z}{w(x,y,z;t)} \]

流管、流束

  • 过流断面(cross-section):管道中垂直于流动方向的横截面
  • 流量(flow rate):单位时间内通过某一流断面的流体数量,可用体积或质量表示
\[ \begin{aligned} Q_V &= \iint_A \mathbf{V} \cdot \mathbf{n} \, \mathrm{d}A \\ Q_m &= \dot{m} = \iint_A \rho (\mathbf{V} \cdot \mathbf{n}) \, \mathrm{d}A \end{aligned} \]
  • 断面平均流速:假设流速在断面上均匀分布,则有 \(\bar{V} = Q_V / A\)

迹线与流线的比较

  • 在定常流动中,迹线与流线重合
  • 在非定常流动中,迹线与流线不重合

脉线(Streakline)

脉线是指相继通过某一空间点的流体质点连成的曲线。

空间某一点有染色标记物/燃料源/烟雾源等,流体质点通过该点时被染色/携带烟粒,形成的曲线即为脉线。

  • 示踪粒子
    • 气体流动:烟雾、水汽(跟随性好)
    • 液体流动:染料

流体微元的运动

流体微元:由大量流体质点组成的具有线性尺度效应的微小流体团

  • 刚体运动:平动 + 转动
  • 流体微元运动:平动 + 变形(线变形、角变形)+ 旋转

变形

线变形

以平面流场为例,设速度分量 \(u\) 沿 \(y\) 方向不变,\(v\) 沿 \(x\) 方向不变。对于小微元 \(\delta x \delta y\),在 \(\Delta t\) 时间内,\(x\) 方向的(单位长度)边长变化为

\[ \frac{\left(u + \dfrac{\partial u}{\partial x} \delta x\right) \Delta t - u \Delta t}{\delta x \Delta t} = \frac{\partial u}{\partial x} \]

故得线应变 \(\varepsilon_{xx} = \frac{\partial u}{\partial x}\). 同理,\(\varepsilon_{yy} = \frac{\partial v}{\partial y}\).

体积应变速率

\[ \lim_{\Delta \tau \to 0} \frac{\Delta V / V}{\Delta \tau} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = \nabla \cdot \mathbf{V} \]

角变形

\[ \mathrm{d} \alpha = \lim_{\delta x \to 0} \frac{\frac{\partial v}{\partial x} \delta x \Delta t + \frac{\partial u}{\partial y} \delta y \Delta t}{\delta x} = \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right) \Delta t \]

Helmholtz 速度分解

\(Q\) 点是 \(P\) 点邻近的一个点,

\[ \mathbf{V}(Q, t) = \mathbf{V}(P, t) + \frac{\partial \mathbf{V}}{\partial x} \delta x + \frac{\partial \mathbf{V}}{\partial y} \delta y + \frac{\partial \mathbf{V}}{\partial z} \delta z \]

矩阵形式:

\[ \delta \mathbf{V} = \begin{bmatrix} \delta u \\ \delta v \\ \delta w \end{bmatrix} = \begin{bmatrix} \dfrac{\partial u}{\partial x} & \dfrac{\partial u}{\partial y} & \dfrac{\partial u}{\partial z} \\ \dfrac{\partial v}{\partial x} & \dfrac{\partial v}{\partial y} & \dfrac{\partial v}{\partial z} \\ \dfrac{\partial w}{\partial x} & \dfrac{\partial w}{\partial y} & \dfrac{\partial w}{\partial z} \end{bmatrix} \begin{bmatrix} \delta x \\ \delta y \\ \delta z \end{bmatrix} \]
\[ \begin{bmatrix} \dfrac{\partial u}{\partial x} & \dfrac{\partial u}{\partial y} & \dfrac{\partial u}{\partial z} \\ \dfrac{\partial v}{\partial x} & \dfrac{\partial v}{\partial y} & \dfrac{\partial v}{\partial z} \\ \dfrac{\partial w}{\partial x} & \dfrac{\partial w}{\partial y} & \dfrac{\partial w}{\partial z} \end{bmatrix} = \begin{bmatrix} \dfrac{\partial u}{\partial x} & \dfrac{1}{2}\left(\dfrac{\partial u}{\partial y} + \dfrac{\partial v}{\partial x}\right) & \dfrac{1}{2}\left(\dfrac{\partial u}{\partial z} + \dfrac{\partial w}{\partial x}\right) \\ \dfrac{1}{2}\left(\dfrac{\partial v}{\partial x} + \dfrac{\partial u}{\partial y}\right) & \dfrac{\partial v}{\partial y} & \dfrac{1}{2}\left(\dfrac{\partial v}{\partial z} + \dfrac{\partial w}{\partial y}\right) \\ \dfrac{1}{2}\left(\dfrac{\partial w}{\partial x} + \dfrac{\partial u}{\partial z}\right) & \dfrac{1}{2}\left(\dfrac{\partial w}{\partial y} + \dfrac{\partial v}{\partial z}\right) & \dfrac{\partial w}{\partial z} \end{bmatrix} + \begin{bmatrix} 0 & \dfrac{1}{2}\left(\dfrac{\partial u}{\partial y} - \dfrac{\partial v}{\partial x}\right) & \dfrac{1}{2}\left(\dfrac{\partial u}{\partial z} - \dfrac{\partial w}{\partial x}\right) \\ \dfrac{1}{2}\left(\dfrac{\partial v}{\partial x} - \dfrac{\partial u}{\partial y}\right) & 0 & \dfrac{1}{2}\left(\dfrac{\partial v}{\partial z} - \dfrac{\partial w}{\partial y}\right) \\ \dfrac{1}{2}\left(\dfrac{\partial w}{\partial x} - \dfrac{\partial u}{\partial z}\right) & \dfrac{1}{2}\left(\dfrac{\partial w}{\partial y} - \dfrac{\partial v}{\partial z}\right) & 0 \end{bmatrix} = \mathbf{S} + \mathbf{\Omega} \]

涡量及涡量场描述

\[ \mathbf{\Omega} = \nabla \times \mathbf{V} = 2 \boldsymbol{\omega} \]

表示流体微元的旋转

  • 涡线:曲线上任意点的切线方向与该点涡量方向一致的假想曲线
    • 涡线方程 \(\(\mathbf{\Omega} \times \mathrm{d}\mathbf{r} = 0\)\)
    • 等价形式 \(\(\frac{\mathrm{d}x}{\Omega_x} = \frac{\mathrm{d}y}{\Omega_y} = \frac{\mathrm{d}z}{\Omega_z}\)\)