跳转至

流体静力学

  • 静止状态:流体相对于惯性系没有运动,平衡状态
  • 相对静止:流体相对于非惯性系没有运动,相对平衡状态

  • 速度场为零

  • 无剪应力

静压强

考虑 \(xOz\) 平面内一个三角形流体微元(Element of fluid),沿 \(y\) 方向厚度为 \(b\),受力分析:

\[ \begin{aligned} \sum F_x &= 0 = p_x b \Delta z - p_n b \Delta s \sin \theta \\ \sum F_z &= 0 = p_z b \Delta x - p_n b \Delta s \cos \theta - \rho g \frac{1}{2} b \Delta x \Delta z \end{aligned} \]

代入 \(\Delta s \sin \theta = \Delta z, \, \Delta s \cos \theta = \Delta x\),得

\[ \begin{aligned} p_x &= p_n \\ p_z &= p_n + \frac{1}{2} \rho g \Delta z \end{aligned} \]

流体微元收缩到一个点,\(\Delta z \to 0\),得

\[ p_x = p_z = p_n \]

受力分析

\[ \mathrm{d} F_x = p \,\mathrm{d} y \,\mathrm{d} z - \left( p + \frac{\partial p}{\partial x} \mathrm{d} x \right) \mathrm{d} y \,\mathrm{d} z = -\frac{\partial p}{\partial x} \mathrm{d} x \,\mathrm{d} y \,\mathrm{d} z \]

力的矢量可以写成

\[ \mathrm{d} \mathbf{F}_{\text{press}} = \left( -\mathbf{i} \frac{\partial p}{\partial x} - \mathbf{j} \frac{\partial p}{\partial y} - \mathbf{k} \frac{\partial p}{\partial z} \right) \mathrm{d} x \,\mathrm{d} y \,\mathrm{d} z = -\nabla p \,\mathrm{d} V \]

单位体积上的力

\[ \mathbf{f}_{\text{press}} = - \nabla p \]

重力作用

\[ \mathrm{d} \mathbf{F}_{\text{grav}} = \rho \mathbf{g} \,\mathrm{d} x \,\mathrm{d} y \,\mathrm{d} z \implies \mathbf{f}_{\text{grav}} = \rho \mathbf{g} \]

单位体积流体的合力

\[ \sum \mathbf{f} = \mathbf{f}_{\text{press}} + \mathbf{f}_{\text{grav}} + \mathbf{f}_{\text{visc}} = \rho \mathbf{a} \]

若不考虑粘性力和加速度项,有

\[ -\nabla p + \rho \mathbf{g} = \mathbf{0} \]

只剩 \(z\) 分量:

\[ \frac{\partial p}{\partial z} = \rho g \implies p = \rho g h \]

绝对压强、相对压强、真空压强

Gage pressure

静水压(Hydrostatic pressure)

静止状态下,

流体静力学控制方程

欧拉平衡方程

\[ f_i - \frac{1}{\rho} \frac{\partial p}{\partial x_i} = 0 \]

👉 静止流体中压强的空间变化,由体积力的存在引起。

有加速度情况下的静压强

\[ \nabla p = \rho (\mathbf{g} - \mathbf{a}) \]

匀加速直线运动

\[ \frac{\partial p}{\partial x} = -\rho a, \quad \frac{\partial p}{\partial y} = 0, \quad \frac{\partial p}{\partial z} = \rho g \]

匀速旋转

\[ \frac{\partial p}{\partial r} = -\rho \omega^2 r, \quad \frac{\partial p}{\partial \theta} = 0, \quad \frac{\partial p}{\partial z} = \rho g \]