Lists, Stacks, and Queues¶
Abstract Data Types (ADT)¶
Definition¶
Data Type = { Objects } \(\cup\) { Operations }
e.g.
int = { 0, 1, 2, 3, ... } \(\cup\) { +, -, *, /, %, ... }
List ADT¶
- Objects: { \(\mathrm{item}_0, \mathrm{item}_1, \ldots, \mathrm{item}_{N-1}\) }
- Operations:
Find the \(k\)-th item
Insert an item after1 the \(k\)-th item
Delete the \(k\)-th item
Simple Array Implementation¶
array[\(i\)] = \(\mathrm{item}_i\) (Sequential Mapping)
- Find: \(\mathcal{O}(1)\)
- MaxSize has to be estimated
- Insert/Delete: \(\mathcal{O}(N)\), and takes time to move elements
Linked Lists¶
Address | Data | Pointer |
---|---|---|
0010 | SUN | 1011 |
0011 | QIAN | 0010 |
0110 | ZHAO | 0011 |
1011 | LI | NULL |
Initialize
typedef struct list_node *list_ptr;
typedef struct list_node {
char data[4];
list_ptr next;
};
list_ptr ptr;
To link 'QIAN' and 'ZHAO'
ptr = (list_ptr) malloc(sizeof(struct list_node));
strcpy(ptr->data, "ZHAO");
ptr->next = QIAN->next;
QIAN->next = ptr;
- Insert: \(\mathcal{O}(1)\)
temp->next = node->next
node->next = temp
(顺序不可颠倒!)
通常将ptr
指向一个假的头指针(dummy head node)
- Delete: \(\mathcal{O}(1)\)
pre->next = node->next
free(node)
(释放内存,防止内存泄漏)
Doubly Linked Circular Lists¶
找第 \(k\) 个元素时,从头到尾找 找第 \(k-1\) 个元素时,还是从头到尾:有无优化?
typedef struct node *node_ptr;
typedef struct node {
node_ptr llink;
element item;
node_ptr rlink;
};
- 最后一个 node 不是 NULL,而是右指针指向 dummy head node
- dummy head node 的左指针指向最后一个 node
An empty list: 左右指针指向自己的 dummy head node
Two Applications¶
The Polynomial ADT¶
Objects: \(P(x) = a_1 x^{e_1} + a_2 x^{e_2} + \ldots + a_n x^{e_n}\); a set of ordered pairs of \(\langle e_i, a_i \rangle\) is the
- Representation 1:数组
系数数组很稀疏
- Representation 2:链表
We represent each term as a node | Coeff | Expon | Next | ->
typedef struct Node *PtrToNode;
typedef PtrToNode Polynomial;
typedef PtrToNode Node;
struct Node {
int Coeff;
int Expon;
PtrToNode Next;
};
Multilists¶
40000 个学生,2500 门课
- Representation 1:数组
矩阵很稀疏
- Representation 2:十字链表
Cursor Implementation of Linked Lists (no pointer)¶
- Features of linked lists:
- Structure contains data and a pointer to the next structure
malloc
andfree
are called to allocate and deallocate memory
初始化二维数组,Next
指向下一个元素
malloc:
free(p):
Stack ADT¶
Last-In-First-Out (LIFO): insertions and deletions are made at the top only
- Objects: A finite ordered list with zero or more elements
- Operations:
Push
Pop
Top
- CreateStack
- DisposeStack
- ...
Linked List Implementation¶
Push¶
Top¶
Pop¶
malloc
and free
are expensive! Solution: - Allocate a large number of cells at once (like cursor implementation) - "recycle bin" (a new stack to store the deleted cells)
Array Implementation¶
struct StackRecord {
int Capacity;
int TopOfStack; // the top pointer
/* ++for push, --for pop, -1 for empty stack++ */
ElementType *Array;
};
Note
- The stack model must be well encapsulated.
- NO part of code should access the stack (
Array
,TopOfStack
) directly - like
private
in Java
- NO part of code should access the stack (
- Error check must be done before Push or Pop (Top)
Applications¶
Balancing Symbols¶
Check if parentheses ()
, brackets []
, and braces {}
are balanced.
Algorithm
{
Make an empty stack S;
while (read in a character c)
{
if (c is an opening symbol) // 左括号,压栈
Push(c, S);
else if (c is a closing symbol) // 右括号
if (S is empty) // 栈空,不匹配
return ERROR;exit;
else
{
if (Top(S) is a matching opening symbol) // 栈顶元素匹配
Pop(S);
else
return ERROR;exit;
}
}
if (S is not empty) // 栈非空,说明左括号多了
return ERROR;
}
- \(T(N) = \mathcal{O}(N)\), on-line algorithm
Postfix¶
Postfix Evaluation¶
- Evaluation: \(((a + (b \times c)) - (d / e))\)
- Infix: \(a + b * c - d / e\)
- Prefix: \(- + a * bc / de\)
- Postfix: \(abc * + de / -\)
- aka. Reverse Polish Notation (RPN)
- 方便计算机计算:运算符位置越靠前,优先级越高
Infix to Postfix Conversion¶
e.g. \(a + b * c - d \to a b c * + d -\)
Example
- Get token
a
, output - Get token
+
, push - Get token
b
, output - Get token
*
*
>+
, push- Get token
c
, output - Get token
-
*
>-
, pop*
, output+
>-
, pop+
, output- Get token
d
, output - pop
-
Example 2
\(a * (b + c) / d\)
- Get token
a
, output - Get token
*
, push - Get token
(
(
>*
???(
<*
, push- Get token
b
, output - Get token
+
, push - Get token
c
, output -
Get token
)
???Solution
- Never pop a
(
from the stack until a)
is encountered (
has the lowest precedence when in the stack, but the highest precedence when encountered (outside the stack)
- Never pop a
-
Get token
/
, push
System Stack¶
管理函数调用
graph BT
A[Return Address]
B[Stack Frame]
C[Local Variables]
D[Return Address]
E[Old Frame Pointer]
A --> B --> C --> D --> E
E --> B
fp
: frame pointersp
: stack pointer
malloc
在堆(heap)上分配内存
A bad use of recursion
void PrintList( List L )
{
if( L != NULL )
{
PrintElement( L->Element );
PrintList( L->Next ); // tail recursion (1)
}
}
When L
is large, the system stack may overflow.
-
尾递归(tail recursion)都可以转化为循环
非递归的函数通常比递归函数更快。所有的递归都可以通过转化去除。但是递归写起来简单!
Queue ADT¶
First-In-First-Out (FIFO): insertions are made at the rear and deletions are made at the front
- Objects: A finite ordered list with zero or more elements
- Operations:
Enqueue
Dequeue
Front
- IsEmpty
- CreateQueue
- DisposeQueue
- ...
Linked List Implementation¶
trivial
Array Implementation¶
struct QueueRecord {
int Capacity;
int Front; // the front pointer
int Rear; // the rear pointer
int Size; // the number of elements, not necessary
ElementType *Array;
};
Job Scheduling in OS
操作系统的进程调度
为了避免浪费,使用 Circular Queue
为了区分空队列和满队列,浪费一个空间,即rear
和 front
之间至少有一个空间(或者通过定义 Size
来区分)
-
插在后面的代码更连贯 ↩