Priority Queues (Heaps)¶
Delete the element with the highest/lowest priority.
ADT¶
- Objects: A finite ordered list with zero or more elements.
- Operations:
- Initialize
Insert
DeleteMin/DeleteMax
- FindMin
Implementations¶
Array¶
- Insert
- add one item at the end: \(\Theta(1)\)
- Delete
- find: \(\Theta(n)\)
- remove the item and shift the array: \(\mathcal{O}(n)\)
Linked List¶
- Insert
- add to the front of the chain: \(\Theta(1)\)
- Delete
- find: \(\Theta(n)\)
- remove the item: \(\Theta(1)\)
Ordered Array¶
- Insert
- find the right place: \(\mathcal{O}(n)\)
- shift the array: \(\mathcal{O}(n)\)
- Delete
- remove the first/last item: \(\Theta(1)\)
Ordered Linked List¶
- Insert
- find the right place: \(\mathcal{O}(n)\)
- add: \(\Theta(1)\)
- Delete
- remove the first/last item: \(\Theta(1)\)
显然 Insertion 的操作次数比 Delete 多,所以链表的实现最好。
插入是随机的,但删除一直是删除最小的。这会使二叉树越来越斜!
Binary Heap¶
完全二叉树由完美二叉树的前 \(n\) 个节点组成。
A complete binary tree of height \(h\) has between \(2^h\) and \(2^{h+1} - 1\) nodes.
\[h = \lfloor \log_2 n \rfloor\]
Array Representation¶
BT[0]
is not used.- 按层序依次存放节点。
Lemma
If a complete binary tree with \(n\) nodes is represented sequentially, then for any node \(i\):
- index of the parent
\[\text{Parent}(i) = \begin{cases} \text{None} & \text{if } i = 1 \\ \lfloor i/2 \rfloor & \text{otherwise} \end{cases}\]
- index of the left child
PriorityQueue Initialize(int MaxElements)
{
PriorityQueue H;
if (MaxElements < MinPQSize)
Error("Priority queue size is too small"); // 太小的队列没意义
H = malloc(sizeof(struct HeapStruct));
if (H == NULL)
FatalError("Out of space!!!");
/* Allocate the array plus one extra for sentinel(哨兵) */
H->Elements = malloc((MaxElements + 1) * sizeof(ElementType));
if (H->Elements == NULL)
FatalError("Out of space!!!");
H->Capacity = MaxElements;
H->Size = 0;
H->Elements[0] = MinData; // 哨兵
return H;
}
Heap Order Property¶
- min tree: 节点的值比其子节点的值小。
- min heap: 满足 min tree 的完全二叉树。
Basic Heap Operations¶
Insertion¶
先满足结构,再调整顺序
/* H->Elements[0] is a sentinel */
void Insert(ElementType X, PriorityQueue H)
{
int i;
if (IsFull(H))
{
Error("Priority queue is full");
return;
}
for (i = ++H->Size; H->Elements[i/2] > X; i /= 2)
H->Elements[i] = H->Elements[i/2];
H->Elements[i] = X;
}
代码中并没有真正的交换操作,而是将最后一个元素不断上浮(percolate up)。
哨兵的存在省去了判断是否到达根节点的步骤。保持了代码的一致性1。
DeleteMin¶
ElementType DeleteMin(PriorityQueue H)
{
int i, Child;
ElementType MinElement, LastElement;
if (IsEmpty(H))
{
Error("Priority queue is empty");
return H->Elements[0];
}
MinElement = H->Elements[1]; // Save the min element
LastElement = H->Elements[H->Size--]; // Get the last element and reduce the size
for (i = 1; i * 2 <= H->Size; i = Child)
{
// Find smaller child
Child = i * 2;
if (Child != H->Size && H->Elements[Child + 1] < H->Elements[Child])
Child++;
// Percolate one level
if (LastElement > H->Elements[Child])
H->Elements[i] = H->Elements[Child];
else
break;
}
H->Elements[i] = LastElement;
return MinElement;
}
- 删除体现在
H->Size--
上 Child != H->Size
判断是否有右孩子,防止数组越界- 能否也在这里加一个哨兵?
Other Heap Operations¶
- DecreaseKey( P, \(\Delta\), H )
- percolate up
- IncreaseKey( P, \(\Delta\), H )
- percolate down
- Delete( P, H )
- DecreaseKey( P, \(-\infty\), H )
- DeleteMin( H )
- BuildHeap( H )
- \(N\) successive Insertions? \(\mathcal{O}(n \log n)\)
- Floyd's method: \(\mathcal{O}(n)\)
- 从最后一个非叶子节点开始(倒数第二层的最右边的节点),依次 percolate down
Theorem
For the perfect binary tree of height \(h\) containing \(2^{h+1} - 1\) nodes, the sum of the heights of all the nodes is \(2^{h+1} - h - 2\).
\[T(N) = \mathcal{O}(N)\]
\(\implies\) 不论数据的顺序好坏,建堆的时间复杂度都是恒定的。堆排序也如此!
Applications¶
Example
在 \(N\) 个元素中找出最大的 \(k\) 个元素。
\(d\)-Heaps¶
All nodes have \(d\) children.
Shall we make \(d\) as large as possible?
DeleteMin
will take \(d-1\) comparisons to find the smallest child.*2
or/2
are bit operations, but*d
is not.- When the priority queue is too large to fit entirely in the main memory, we can use a \(d\)-heap to reduce the number of disk accesses. 时间换空间!
-
代码越短越好。让TCB(信任计算基)小。Bug也少。 ↩