跳转至

Priority Queues (Heaps)

Delete the element with the highest/lowest priority.

ADT

  • Objects: A finite ordered list with zero or more elements.
  • Operations:
    • Initialize
    • ⭐ Insert
    • ⭐ DeleteMin/DeleteMax
    • FindMin

Implementations

Array

  • Insert
    • add one item at the end: \(\Theta(1)\)
  • Delete
    • find: \(\Theta(n)\)
    • remove the item and shift the array: \(\mathcal{O}(n)\)

Linked List

  • Insert
    • add to the front of the chain: \(\Theta(1)\)
  • Delete
    • find: \(\Theta(n)\)
    • remove the item: \(\Theta(1)\)

Ordered Array

  • Insert
    • find the right place: \(\mathcal{O}(n)\)
    • shift the array: \(\mathcal{O}(n)\)
  • Delete
    • remove the first/last item: \(\Theta(1)\)

Ordered Linked List

  • Insert
    • find the right place: \(\mathcal{O}(n)\)
    • add: \(\Theta(1)\)
  • Delete
    • remove the first/last item: \(\Theta(1)\)

显然 Insertion 的操作次数比 Delete 多,所以链表的实现最好。

插入是随机的,但删除一直是删除最小的。这会使二叉树越来越斜!

Binary Heap

完全二叉树由完美二叉树的前 \(n\) 个节点组成。

A complete binary tree of height \(h\) has between \(2^h\) and \(2^{h+1} - 1\) nodes.

\[h = \lfloor \log_2 n \rfloor\]

Array Representation

  • BT[0] is not used.
  • 按层序依次存放节点。

Lemma

If a complete binary tree with \(n\) nodes is represented sequentially, then for any node \(i\):

  1. index of the parent
\[\text{Parent}(i) = \begin{cases} \text{None} & \text{if } i = 1 \\ \lfloor i/2 \rfloor & \text{otherwise} \end{cases}\]
  1. index of the left child
PriorityQueue Initialize(int MaxElements)
{
    PriorityQueue H;

    if (MaxElements < MinPQSize)
        Error("Priority queue size is too small"); // 太小的队列没意义

    H = malloc(sizeof(struct HeapStruct));
    if (H == NULL)
        FatalError("Out of space!!!");
    /* Allocate the array plus one extra for sentinel(哨兵) */
    H->Elements = malloc((MaxElements + 1) * sizeof(ElementType));
    if (H->Elements == NULL)
        FatalError("Out of space!!!");
    H->Capacity = MaxElements;
    H->Size = 0;
    H->Elements[0] = MinData; // 哨兵
    return H;
}

Heap Order Property

  • min tree: 节点的值比其子节点的值小。
  • min heap: 满足 min tree 的完全二叉树。

Basic Heap Operations

Insertion

先满足结构,再调整顺序

        10
      /    \
    12      20
   /  \    /
  15  18  ?
/* H->Elements[0] is a sentinel */
void Insert(ElementType X, PriorityQueue H)
{
    int i;

    if (IsFull(H))
    {
        Error("Priority queue is full");
        return;
    }

    for (i = ++H->Size; H->Elements[i/2] > X; i /= 2)
        H->Elements[i] = H->Elements[i/2];
    H->Elements[i] = X;
}

代码中并没有真正的交换操作,而是将最后一个元素不断上浮(percolate up)

哨兵的存在省去了判断是否到达根节点的步骤。保持了代码的一致性1

DeleteMin

ElementType DeleteMin(PriorityQueue H)
{
    int i, Child;
    ElementType MinElement, LastElement;
    if (IsEmpty(H))
    {
        Error("Priority queue is empty");
        return H->Elements[0];
    }
    MinElement = H->Elements[1]; // Save the min element
    LastElement = H->Elements[H->Size--]; // Get the last element and reduce the size
    for (i = 1; i * 2 <= H->Size; i = Child)
    {
        // Find smaller child
        Child = i * 2;
        if (Child != H->Size && H->Elements[Child + 1] < H->Elements[Child])
            Child++;
        // Percolate one level
        if (LastElement > H->Elements[Child])
            H->Elements[i] = H->Elements[Child];
        else
            break;
    }
    H->Elements[i] = LastElement;
    return MinElement;
}
  • 删除体现在 H->Size--
  • Child != H->Size 判断是否有右孩子,防止数组越界
    • 能否也在这里加一个哨兵?

Other Heap Operations

  • DecreaseKey( P, \(\Delta\), H )
    • percolate up
  • IncreaseKey( P, \(\Delta\), H )
    • percolate down
  • Delete( P, H )
    • DecreaseKey( P, \(-\infty\), H )
    • DeleteMin( H )
  • BuildHeap( H )
    • \(N\) successive Insertions? \(\mathcal{O}(n \log n)\)
    • Floyd's method: \(\mathcal{O}(n)\)
    • 从最后一个非叶子节点开始(倒数第二层的最右边的节点),依次 percolate down

Theorem

For the perfect binary tree of height \(h\) containing \(2^{h+1} - 1\) nodes, the sum of the heights of all the nodes is \(2^{h+1} - h - 2\).

\[T(N) = \mathcal{O}(N)\]

\(\implies\) 不论数据的顺序好坏,建堆的时间复杂度都是恒定的。堆排序也如此!

Applications

Example

\(N\) 个元素中找出最大的 \(k\) 个元素。

\(d\)-Heaps

All nodes have \(d\) children.

Shall we make \(d\) as large as possible?

  • DeleteMin will take \(d-1\) comparisons to find the smallest child.
  • *2 or /2 are bit operations, but *d is not.
  • When the priority queue is too large to fit entirely in the main memory, we can use a \(d\)-heap to reduce the number of disk accesses. 时间换空间!

  1. 代码越短越好。让TCB(信任计算基)小。Bug也少。