跳转至

Local Analysis

Linear homogeneous ODE:

\[ \begin{equation} \label{eq:linear_homogeneous_ode} y^{(n)}(x) + p_{n-1}(x) y^{(n-1)}(x) + \ldots + p_1(x) y'(x) + p_0(x) y(x) = 0 \end{equation} \]

Well-posedness of the IVP for this eq. may fail at singular points of \(p_k(x)\).

Classification of singular points of an ODE (i.e. singular points of coefficients)

ODE on a complex plane

\[ y = y(z), \quad z \in \mathbb{C}$$ \]

is a sol. to equation \eqref{eq:linear_homogeneous_ode}

\(y'(z)\) exists in a region of \(\mathbb{C}\) \(\implies y\) is analytic there.

So NOT all ODE makes sense when formulated in \(\mathbb{C}\).

Example

\[ y'(x) = |x| \]

is OK in \(\mathbb{R}\).

\[ y(x) = \frac{1}{2} x |x| + c \]

Therefore, for \(y'(z) = g(z, y(z))\) to make sense, we need \(g(z, y(z))\) to be analytic in \(z\).

If \(y_1, y_2\) are two linearly independent solutions

\[ \begin{aligned} p_0(z) &= \frac{y_1'' y_2' - y_2'' y_1'}{y_1' y_2 - y_1 y_2'} \\ p_1(z) &= \frac{y_2'' y_1 - y_1'' y_2}{y_1' y_2 - y_1 y_2'} \end{aligned} \]
  • \(p_0, p_1\): meromorphic functions with isolated poles

Example

\[ y'' - |z| y' + (|z| - 1) y = 0 \]

admits analytic solutions

Singular point of an ODE: non-analytic point of \(p_k(z)\)

Ordinary Points

the point where the coeff. are analytic at.

Set of ordinary points is open in \(\mathbb{C}\).

e.g.

\[ y' = |z| y \]

\(|z|\) is nowhere analytic \(\implies\) no ordinary points.

e.g.

\[ x^5 y'' = y \]

\(p_0 = -\frac{1}{x^5}\), ordinary points: \(\mathbb{C} \setminus \{0\}\)

Conclusion

Near an ordinary point \(x_0\), all the \(n\) linearly independent solutions are analytic.

Radius of convergence: \(R \geq \text{dist}(x_0, \text{nearest singular point of } p_k(x))\)

Example

\[ (x^2 + 1) y' + 2xy = 0 \]

\(p_0 = \frac{2x}{x^2 + 1}\) is analytic near \(x_0 = 0\). Singular points: \(\pm \mathrm{i}\).

\[ y = C (1 + x^2)^{-1} = C \sum_{n=0}^{\infty} (-x^2)^n \]

converges for \(|x| < 1\), \(R = 1\).

Example

\[ \left \{ \begin{array}{l} y' = 2xy \\ y(0) = 1 \end{array} \right. \]

\(p_0 = -2x\) is analytic everywhere, \(x_0 = 0\) is an ordinary point.

Find a solution near \(x_0 = 0\):

\[ y(x) = \sum_{n=0}^{\infty} a_n x^n \quad\text{(ansatz)} \]

Plug into the ODE:

\[ \sum_{n=0}^{\infty} n a_n x^{n-1} = \sum_{n=0}^{\infty} 2 a_n x^{n+1} \]

Compare coeff., \(a_1 = 0\). For \(n \geq 2\), we have the recursion relation

\[ n a_n = 2 a_{n-2} \implies a_{2k} = \frac{a_0}{k!} \]

sol

\[ y(x) = \sum_{n=0}^{\infty} \frac{a_0}{k!} x^{2k} = a_0 e^{x^2} \]

By i.c., \(a_0 = 1\). So

\[y(x) = e^{x^2}\]

is the unique sol. to the IVP.

Airy Equation

\[ y'' - x y = 0 \]

Physical background: 1D time-dependent Schrödinger equation: $$ -\frac{\hbar^2}{2m} \frac{d2}{dx2} \psi(x) + V(x) \psi(x) = i \hbar \frac{\partial}{\partial t} \psi(x, t) $$

where \(\psi(x, t) = \psi(x) e^{-iEt/\hbar}, E = \hbar \omega\)

\[ k^2(x) =\frac{2m (E - V(x)}{\hbar^2} \]
\[ \begin{equation} \tag{Helmholtz eq.} \implies \psi''(x) + k^2(x) \psi(x) = 0 \end{equation} \]

If \(k^2(x) \sim \alpha(x - x_0)\) near \(x_0\), then \(x_0\) is called a turning point.

\[ \psi''(x) + \alpha(x - x_0) \psi(x) = 0 \]

\(x_0\) is an ordinary point, so try the ansatz

\[ y(x) = \sum_{n=0}^{\infty} a_n x^n \]
\[ \sum_{n=2}^{\infty} a_n n(n-1) x^{n-2} = \sum_{n=0}^{\infty} a_n x^{n+1} \]
  • \(a_0, a_1\) are arbitrary constants, determined by i.c.

\(n = 2 \implies a_2 = 0\). The recursion relation is

\[ (n+2)(n+1) a_{n+2} = a_{n-1}, \quad n = 1, 2, \ldots \]

i.e.,

\[ a_{n+3} = \frac{a_n}{(n+2)(n+1)}, \quad n = 0, 1, 2, \ldots \]

we can get

\[ \begin{aligned} a_{3k} &= \frac{a_0}{(3k)(3k-1)(3k-3)(3k-4) \ldots 9 \cdot 8 \cdot 6 \cdot 5 \cdot 3 \cdot 2} \\ &= \frac{a_0 \Gamma(\frac{2}{3})}{9^n n! \Gamma(n + \frac{2}{3})} \\ a_{3k+1} &= \frac{a_1}{(3k+1)(3k)(3k-2)(3k-3) \ldots 10 \cdot 9 \cdot 7 \cdot 6 \cdot 4 \cdot 3} \\ &= \frac{a_1 \Gamma(\frac{4}{3})}{9^n n! \Gamma(n + \frac{4}{3})} \\ a_{3k+2} &= 0 \end{aligned} \]

So the general solution is

\[ y(x) = c_1 \sum_{k=0}^{\infty} \frac{x^{3k}}{9^k k! \Gamma(k + \frac{2}{3})} + c_2 \sum_{k=0}^{\infty} \frac{x^{3k+1}}{9^k k! \Gamma(k + \frac{4}{3})} \]

where

\[ c_1 = a_0 \Gamma(\frac{2}{3}), \quad c_2 = a_1 \Gamma(\frac{4}{3}) \]

Singular Points

Regular Singular Points

\(x_0 \neq \infty\) is a regular singular point if not all \(p_0(x), p_1(x), \ldots, p_{n-1}(x)\) are analytic at \(x_0\), but \((x - x_0)^n p_0(x), (x - x_0)^{n-1} p_1(x), \ldots, (x - x_0) p_{n-1}(x)\) are analytic at \(x_0\).

Conclusion

Near a regular singular point \(x_0\), solutions are

  1. analytic
  2. has a pole
  3. has an algebraic or logarithmic branch point

At least one solution has the form

\[ y(x) = (x - x_0)^{\alpha} A(x) \]

where \(\alpha \notin \mathbb{Z}\) and \(A(x)\) is analytic at \(x_0\). \(\alpha\) is called an indicial exponent.

\[ A(x) = \sum a_n (x - x_0)^n \]

then

\[ y(x) = \sum a_n (x - x_0)^{n + \alpha} \]

this is called a Frobenius series.

Example

\[ x^3 y' = (x+1) y \]

\(x_0 = 0\) is an irregular singular point.

Example

\[ y(x) = C \tanh \left(\frac{x}{2}\right) = C \frac{e^x - 1}{e^x + 1} \]

poles at \(x = \pm \mathrm{i} \pi\), radius of convergence \(R = \pi\).

Other solutions:

\[ y(x) = (x - x_0)^{\beta} B(x) \]
  • \(\alpha, \beta\): indicial exponents

Euler Equation

\[ y'' + \frac{y}{4x^2} = 0 \]

If we try Taylor series,

\[ y(x) = \sum a_n x^n \]

then we can only get the trivial solution \(y(x) = 0\).

\(x_0 = 0\) is a regular singular point. \(y(x) \equiv 0\) is a solution.

Try the ansatz

\[ y(x) = (x - x_0)^{\alpha} A(x) \]

where \(A(x)\) is analytic at \(x_0\). Plug into the ODE:

\[ \sum_{n=0}^{\infty} 4 (n + \alpha)(n + \alpha - 1) a_n x^{n + \alpha - 2} + \sum_{n=0}^{\infty} a_n x^{n + \alpha} = 0 \]
\[ \implies \alpha = \frac{1}{2}, a_n = 0 \text{ for } n \geq 1 \]

Frobenius Method for 2nd order ODEs

\[ y'' + \frac{p(x)}{x - x_0} y' + \frac{q(x)}{(x - x_0)^2} y = 0 \]
  • \(p(x), q(x)\): analytic near \(x_0\)
  • \(x_0\): regular singular point

Try the ansatz

\[ \begin{aligned} p(x) &= \sum_{n=0}^{\infty} p_n (x - x_0)^n \\ q(x) &= \sum_{n=0}^{\infty} q_n (x - x_0)^n \\ y(x) &= \sum_{n=0}^{\infty} a_n (x - x_0)^{n + \alpha} \end{aligned} \]

Plug into the ODE:

\[ \sum_{n=0}^{\infty} a_n (n + \alpha)(n + \alpha - 1) (x - x_0)^{n + \alpha - 2} + \frac{1}{x - x_0} \left(\sum_{n=0}^{\infty} p_n (x - x_0)^n \right) \left(\sum_{n=0}^{\infty} a_n (n + \alpha) (x - x_0)^{n + \alpha - 1} \right) + \frac{1}{(x - x_0)^2} \left(\sum_{n=0}^{\infty} q_n (x - x_0)^n \right) \left(\sum_{n=0}^{\infty} a_n (x - x_0)^{n + \alpha} \right) = 0 \]

\(n = 0\) i.e. \((x - x_0)^{\alpha - 2}\) term:

\[ (\underset{P(\alpha)}{\underbrace{\alpha(\alpha - 1) + p_0 \alpha + q_0}}) a_0 = 0 \]
  • \(a_0 \neq 0\), arbitrary constant
  • \(P(\alpha) = 0\)

\((x - x_0)^{n + \alpha - 2}\) terms:

$$

$$

If \(P(\alpha) = 0\) & \(P(\alpha + n) \neq 0\), we can get \(a_n\) from solving the recursion relation. Then we get Frobenius series sol.

From \(P(\alpha) = 0\), we get two roots \(\alpha_1, \alpha_2\).

  • If \(\Re \alpha_1 > \Re \alpha_2\), then \(P(\alpha_1 + n) \neq 0 \implies y(x) = \sum a_n (x - x_0)^{n + \alpha_1}\).

Modified Bessel Equation

\[ y'' + \frac{1}{x} y' - \left(1 + \frac{\nu^2}{x^2}\right) y = 0 \]

where \(\nu \in \mathbb{C}\) is a constant.

It is obvious that \(x_0 = 0\) is a regular singular point.

\[ p(x) = 1, \quad q(x) = -(x^2 + \nu^2). \]

Plug in \(y(x) = \sum_{n=0}^{\infty} a_n x^{n + \alpha}\),

\[ a_0 [\alpha(\alpha - 1) + \alpha - \nu^2] = 0 \]

i.e.,

\[ P(\alpha) = \alpha^2 - \nu^2 = 0 \implies \alpha = \pm \nu \]

Without loss of generality, assume \(\Re \nu \geq 0\).

\[ P(\alpha_1 + 1) = (\alpha_1 + 1)^2 - \nu^2 \neq 0 \]

where \(\alpha_1 = \nu\). \(P(\alpha_1 + n) \neq 0\).

\[ \begin{aligned} \implies & a_1 = 0, \, a_3 = a_5 = \ldots = a_{2k+1} = 0, \\ &a_{2n} = \frac{a_{2n-2}}{(\nu + 2n)^2 - \nu^2} \\ \implies & a_{2n} = \frac{a_0 \Gamma(\nu + 1)}{2^{2n} n! \Gamma(n + \nu + 1)} \end{aligned} \]

then

\[ y(x) = a_0 \Gamma(\nu + 1) \sum_{n=1}^{\infty} \frac{(x/2)^{2n + \nu}}{n! \Gamma(n + \nu + 1)} \]

Set

\[ a_0 = \left(\frac{1}{2} \right)^{\nu} \frac{1}{\Gamma(\nu + 1)} \]

we get the modified Bessel function of the first kind

\[ y(x) = \sum_{n=0}^{\infty} \frac{(x/2)^{2n + \nu}}{n! \Gamma(n + \nu + 1)} := I_{\nu}(x) \]

Radius of convergence: \(R = \infty\).

For $\nu =

Irregular Singular Points

Some Notations for Asymptotic Analysis

when \(x \to x_0\),

  • \(f(x) \ll g(x) \iff f(x) = \omicron(g(x))\)
  • \(\displaystyle f(x) \sim g(x) \iff \lim_{x \to x_0} \frac{f(x)}{g(x)} = 1\)

Example

\[ x^2 y'' + (1 + 3x) y' + y = 0 \]

We can derive that one sol. \(y(x) \sim C_2 x^{-1} e^{1/x}\) as \(x \to 0^+\).


\[ x^3 y'' = y \]
\[ \begin{aligned} y_1(x) &\sim C_1 x^{\frac{3}{4}} e^{2 x^{-\frac{1}{2}}} \\ y_2(x) &\sim C_2 x^{\frac{3}{4}} e^{-2 x^{-\frac{1}{2}}} \end{aligned} \]
  • \(e^{x^{-1}}, e^{2 x^{-1/2}}, e^{-2 x^{-1/2}}\) describes the essential singularity of the sol. at \(x_0 = 0\), called controlling factors.

Inspired by the exponential controlling factors, we look for sol. of the form

\[ y(x) = e^{S(x)} \]

Plug into the ODE,

$$

$$

Method of Dominant Balance:

\[ x^3 y'' = y \]

\(y(x) = e^{S(x)} \implies (S'' + S'^2) x^3 = 1\)