跳转至

10.15

设一系统状态完全由独立参数 \(\vec{x} = (x_1, x_2, \ldots, x_n)\) 确定,并用 \(f(\vec{x})\) 表示某一态函数,则微分

\[ \mathrm{d} f = \sum_{i=1}^n \frac{\partial f}{\partial x_i} \mathrm{d} x_i \]

是恰当微分(exact differential)。如果系统状态由 \(\vec{x}_i \to \vec{x}_f\),则态函数

\[ \Delta f = \int_{\vec{x}_i}^{\vec{x}_f} \mathrm{d} f = f(\vec{x}_f) - f(\vec{x}_i) \]

恰当微分

\[ \mathrm{d} f = \frac{\partial f}{\partial x} \mathrm{d} x + \frac{\partial f}{\partial y} \mathrm{d} y \]

偏导次序可交换:

\[ \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} \]

这与 Maxwell 关系有关。


不恰当微分(inexact differential):

\[ \mathrm{d}\kern{-4.3pt}\bar{\small\phantom{q}}\kern{-0.7pt} g = y \mathrm{d} x \]

可逆性

牛顿力学是可逆的

正过程:\(t: 0 \to t\)