跳转至

静电场的局域性质

  • 曲线 \(d\vec{l}\) $$ \begin{aligned} \int_L \vec{E} \cdot d\vec{l} &= -\mathcal{E}_i/q + \mathcal{E}_f/q = \int_L \int_V \frac{\rho(\vec{x}) dV}{4\pi\epsilon_0} \boxed{\frac{\vec{x} - \vec{x}'}{\left|\vec{x} - \vec{x}'\right|^3}} \cdot d\vec{x} \ &= -\int_L \sum_i dx_i \left(\int_V \frac{\rho(\vec{x}) dV'}{4\pi\epsilon_0} \frac{1}{\left|\vec{x} - \vec{x}'\right|}\right) \ \end{aligned} $$
  • \[\frac{\vec{x} - \vec{x}_i}{\left|\vec{x} - \vec{x}_i\right|^3} = -\sum_i \partial_{x_i} \frac{1}{\left|\vec{x} - \vec{x}_i\right|}\]
  • 环量 \(\(\oint_L \vec{E} \cdot d\vec{l} = 0\)\)
  • 这告诉我们:电场线只可能:
    1. 从点到点
    2. 从点到无穷远
    3. 从无穷远到无穷远
  • 曲面 \(d\vec{S}\)
  • \(\int_S \vec{E} \cdot d\vec{S}\)
  • 通量 \(\(\oiint_S \vec{E} \cdot d\vec{S} = \frac{Q_S}{\epsilon_0}\)\)
  • 这告诉我们,通量和场线数量在概念上是一样的

\[\int_{\cancel{L}} \vec{E} \cdot d\vec{l} = \int \boxed{E_1 dx_1 + E_2 dx_2 + E_3 dx_3}\]
  • 不考虑路径 \(L\),被积函数 \(\vec{E} \cdot d\vec{l}\) 总可以写成方框里的形式
  • 这整个东西是在 \(\mathbb{R}^3\) 上完整分布的,只有在具体积分时才将 \(dx_1, dx_2, dx_3\) 约束到 \(L\) 给出的 \(x_i = x_i(t)\)
  • 此即为微分形式
\[\int_{\cancel{S}} \vec{E} \cdot d\vec{S} = \int \boxed{E_1 dx_2 dx_3 + E_2 dx_3 dx_1 + E_3 dx_1 dx_2}\]

大前提:在 \(\mathbb{R}^3\) 上讨论,参数记为 \((t_1, t_2, t_3)\)

  • 0 - 形式
  • 一个微分形式都没有(普通函数)
  • 例:\(f(\vec{x}), f(t_1, t_2, t_3)\) \(\(\omega^{(0)} \equiv f\)\)
  • 1 - 形式 \(dt_i\) \(\(\omega^{(1)} = f_1 dt_1 + f_2 dt_2 + f_3 dt_3\)\)
  • 2 - 形式 \(dt_i \wedge dt_j\) \(\(\omega^{(2)} = f_1 dt_2 \wedge dt_3 + f_2 dt_3 \wedge dt_1 + f_3 dt_1 \wedge dt_2\)\)
  • 3 - 形式 \(dt_1 \wedge dt_2 \wedge dt_3\) \(\(\omega^{(3)} = f dt_1 \wedge dt_2 \wedge dt_3\)\)
\[ \int_L \vec{E} \cdot d\vec{l} = -\int_L \underset{\mathrm{d} \,\text{外微分}}{\underbrace{\sum_i dx_i \frac{\partial}{\partial x_i}}} \Phi \]
\[d\omega = \sum_i dx_i \wedge \frac{\partial}{\partial x_i} \omega\]

只能做 0 - 形式 \(\to\) 1 - 形式 \(\to\) 2 - 形式 \(\to\) 3 - 形式的外微分

Stokes 定理(广义)

\[\int_{\partial R^{(k+1)}} \omega^{(k)} = \int_{R^{(k+1)}} \mathrm{d}\omega^{(k)}\]
  • \(k = 0\)\(\(\int_L \mathrm{d}f = \sum_{\text{端点}} f = f_f - f_i\)\)
  • \(k = 1\) 时 $$ \begin{aligned} \omega^{(1)} &= f_1 dx_1 + f_2 dx_2 + f_3 dx_3 \ \mathrm{d}\omega^{(1)} &= \partial_2 f_1 dx_2 \wedge dx_1 + \partial_3 f_1 dx_3 \wedge dx_1 \ &+ \partial_1 f_2 dx_1 \wedge dx_2 + \partial_3 f_2 dx_3 \wedge dx_2 \ &+ \partial_1 f_3 dx_1 \wedge dx_3 + \partial_2 f_3 dx_2 \wedge dx_3 \ &= \left(\partial_2 f_3 - \partial_3 f_2\right) dx_2 \wedge dx_3 + \left(\partial_3 f_1 - \partial_1 f_3\right) dx_3 \wedge dx_1 + \left(\partial_1 f_2 - \partial_2 f_1\right) dx_1 \wedge dx_2 \end{aligned} $$

    在直角坐标系下,此即为 \(\(\oint_{\partial S} \vec{E} \cdot d\vec{l} = \int_S \left(\nabla \times \vec{E}\right) \cdot d\vec{S}\)\)

    \[\iff\nabla \times \vec{E} = 0\]
    \[\iff \mathrm{d}\left(\vec{E} \cdot d\vec{l}\right) = 0\]

    注意到 \(\vec{E} \cdot d\vec{l} = -\mathrm{d}\Phi\),所以有 \(\mathrm{d}^2\Phi = 0\)。事实上,

    $$\mathrm{d}^2 = \

    梯度场 \(\vec{E} = -\nabla \Phi\)

  • \(k = 2\) 时 $$ \begin{aligned} \omega^{(2)} &= f_1 dx_2 \wedge dx_3 + f_2 dx_3 \wedge dx_1 + f_3 dx_1 \wedge dx_2 \ \mathrm{d}\omega^{(2)} &= \left(\partial_1 f_1 + \partial_2 f_2 + \partial_3 f_3\right) dx_1 \wedge dx_2 \wedge dx_3 \end{aligned} $$

    在直角坐标系下,此即为 \(\(\int_{\partial V} \vec{E} \cdot d\vec{S} = \int_V \left(\nabla \cdot \vec{E}\right) dV\)\)

    \[\iff\nabla \cdot \vec{E} = \frac{\rho}{\epsilon_0}\]
    \[\iff \mathrm{d}\left(\vec{E} \cdot d\vec{S}\right) = \frac{\rho}{\epsilon_0} dV\]
graph LR
    A[场] --> B[基底空间]
    A --> C[目标空间<br>取值的性质]