第四章 三维空间中的量子力学
4.1 薛定谔方程
\[ \begin{equation} \tag{4.1.1} \label{eq:schrodinger-3d} \mathrm{i} \hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \Psi + V \Psi \end{equation} \]
\(\Psi(x, y, z) = \psi(x)\phi(y)\varphi(z)\),写成相乘的形式是因为粒子在各个方向上的概率是独立的。
4.1.1 球坐标
势能为中心势,即 \(V(\vec{r}) = V(r)\). 采用球坐标系 \((r, \theta, \phi)\),拉普拉斯算符为
\[ \begin{equation} \tag{4.1.2} \label{eq:laplacian-spherical} \nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left( r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left( \sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \end{equation} \]
定态薛定谔方程化为
\[ -\frac{\hbar^2}{2m} \left[ \frac{1}{r^2} \frac{\partial}{\partial r} \left( r^2 \frac{\partial \psi}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left( \sin \theta \frac{\partial \psi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \psi}{\partial \phi^2} \right] + V \psi = E \psi \]
分离变量,设 \(\psi(r, \theta, \phi) = R(r) Y(\theta, \phi)\),得
\[ -\frac{\hbar^2}{2m} \left[ \frac{Y}{r^2} \frac{\mathrm{d}}{\mathrm{d} r} \left( r^2 \frac{\mathrm{d} R}{\mathrm{d} r} \right) + \frac{R}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left( \sin \theta \frac{\partial Y}{\partial \theta} \right) + \frac{R}{r^2 \sin^2 \theta} \frac{\partial^2 Y}{\partial \phi^2} \right] + V R Y = E R Y \]
两边同除以 \(R Y\),乘以 \(-2mr^2/\hbar^2\),得
\[ \left( \frac{1}{R} \frac{\mathrm{d}}{\mathrm{d} r} \left( r^2 \frac{\mathrm{d} R}{\mathrm{d} r} \right) - \frac{2m r^2}{\hbar^2} [V(r) - E] \right) + \frac{1}{Y} \left( \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left( \sin \theta \frac{\partial Y}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2 Y}{\partial \phi^2} \right) = 0 \]
得到两个方程:
\[ \begin{align} \frac{1}{R} \frac{\mathrm{d}}{\mathrm{d} r} \left( r^2 \frac{\mathrm{d} R}{\mathrm{d} r} \right) - \frac{2m r^2}{\hbar^2} [V(r) - E] &= \ell(\ell+1) \tag{4.1.3} \label{eq:radial} \\ \frac{1}{Y} \left( \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left( \sin \theta \frac{\partial Y}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2 Y}{\partial \phi^2} \right) &= -\ell(\ell+1) \tag{4.1.4} \label{eq:angular} \end{align} \]
4.1.2 角方程
对式 \eqref{eq:angular} 乘以 \(Y \sin^2 \theta\),得
\[ \sin \theta \frac{\partial}{\partial \theta} \left( \sin \theta \frac{\partial Y}{\partial \theta} \right) + \frac{\partial^2 Y}{\partial \phi^2} = -\ell(\ell+1) Y \sin^2 \theta \]
继续分离变量,设 \(Y(\theta, \phi) = \Theta(\theta) \Phi(\phi)\),得
\[ \left( \frac{\sin \theta}{\Theta} \frac{\mathrm{d}}{\mathrm{d} \theta} \left( \sin \theta \frac{\mathrm{d} \Theta}{\mathrm{d} \theta} \right) + \ell(\ell+1) \sin^2 \theta \right) + \frac{1}{\Phi} \frac{\mathrm{d}^2 \Phi}{\mathrm{d} \phi^2} = 0 \]
\(\phi\) 向方程:
\[ \begin{equation} \label{eq:phi-equation} \frac{\mathrm{d}^2 \Phi}{\mathrm{d} \phi^2} + m^2 \Phi = 0 \implies \Phi(\phi) = e^{\mathrm{i} m \phi} \end{equation} \]
\(\theta\) 向方程:
\[ \begin{equation} \label{eq:theta-equation} \sin \theta \frac{\mathrm{d}}{\mathrm{d} \theta} \left( \sin \theta \frac{\mathrm{d} \Theta}{\mathrm{d} \theta} \right) + \left[ \ell(\ell+1) \sin^2 \theta - m^2 \right] \Theta = 0 \end{equation} \]
它的解是缔和勒让德函数(associated Legendre function) \(\mathrm{P}_\ell^m(\cos \theta)\),其定义为
\[ \begin{equation} \label{eq:associated-legendre} \mathrm{P}_{\ell}^m(x) = (-1)^m (1 - x^2)^{m/2} \frac{\mathrm{d}^m}{\mathrm{d} x^m} \mathrm{P}_\ell(x) \end{equation} \]
其中 \(\mathrm{P}_\ell(x)\) 是 \(\ell\) 阶勒让德多项式(Legendre polynomial),由罗德里格斯公式(Rodrigues' formula)定义为
\[ \begin{equation} \mathrm{P}_{\ell}(x) = \frac{1}{2^\ell \ell!} \frac{\mathrm{d}^\ell}{\mathrm{d} x^\ell} (x^2 - 1)^\ell \end{equation} \]
组合 \(\theta\) 和 \(\phi\) 的解,得到(归一化的)球谐函数(spherical harmonics):
\[ \begin{equation} \mathrm{Y}_{\ell}^m(\theta, \phi) = \sqrt{\frac{2\ell + 1}{4\pi} \frac{(\ell - m)!}{(\ell + m)!}} \, \mathrm{P}_\ell^m(\cos \theta) e^{\mathrm{i} m \phi} \end{equation} \]
4.1.3 径向方程
观察径向方程 \eqref{eq:radial},令 \(u(r) \equiv r R(r)\),有
\[ \begin{aligned} \frac{\mathrm{d} R}{\mathrm{d} r} &= \frac{\mathrm{d}}{\mathrm{d} r} \left( \frac{u}{r} \right) = \frac{1}{r} \frac{\mathrm{d} u}{\mathrm{d} r} - \frac{u}{r^2} \\ \frac{\mathrm{d}}{\mathrm{d} r} \left( r^2 \frac{\mathrm{d} R}{\mathrm{d} r} \right) &= \frac{\mathrm{d}}{\mathrm{d} r} \left( r \frac{\mathrm{d} u}{\mathrm{d} r} - u \right) = r \frac{\mathrm{d}^2 u}{\mathrm{d} r^2} \end{aligned} \]
原式 \eqref{eq:radial} 化为
\[ \begin{equation} \label{eq:radial-u} - \frac{\hbar^2}{2m} \frac{\mathrm{d}^2 u}{\mathrm{d} r^2} + \left[ V(r) + \frac{\hbar^2}{2m} \frac{\ell(\ell+1)}{r^2} \right] u = E u \end{equation} \]
此即为径向方程。注意到式 \eqref{eq:radial-u} 与一维薛定谔方程形式相同,只是势能项(有效势)多了一个离心项:
\[ V_{\mathrm{eff}}(r) = V(r) + \frac{\hbar^2}{2m} \frac{\ell(\ell+1)}{r^2} \]
因为 \(r^{-2}\) 项倾向于将粒子向外抛出,类似于经典力学的离心力,故称为离心项。
无限深球势阱
求无限深球势阱下的波函数和能量允许值。
\[ V(r) = \begin{cases} 0, & r < a \\ +\infty, & r \geq a \end{cases} \]
势阱内,径向方程 \eqref{eq:radial-u} 为
\[ \begin{equation} \label{eq:no-potential-radial} \frac{\mathrm{d}^2 u}{\mathrm{d} r^2} + \left( k^2 - \frac{\ell(\ell+1)}{r^2} \right) u = 0, \quad k \equiv \sqrt{\frac{2mE}{\hbar^2}} \end{equation} \]
边界条件:\(u(a) = 0\). 先考虑 \(\ell = 0\) 的简单情形:
\[ \frac{\mathrm{d}^2 u}{\mathrm{d} r^2} + k^2 u = 0 \implies u(r) = A \sin kr + B \cos kr \]
$r \to 0 $ 时,\([\cos(kr)]/r \to \infty\),不符合物理意义,故 \(B = 0\). 边界条件要求 \(\sin (ka) = 0\),即 \(ka = N \pi, \, N = 1, 2, 3, \ldots\) 故能量允许值为
\[ E_{N0} = \frac{N^2 \pi^2 \hbar^2}{2m a^2}, \quad N = 1, 2, 3, \ldots \]
这与无限深方势阱的能级相同。对应的径向波函数为
\[ R(r) = \frac{u(r)}{r} = \sqrt{\frac{2}{a}} \frac{1}{r} \sin \left( \frac{N \pi r}{a} \right). \]
对任意整数 \(\ell\),式 \eqref{eq:no-potential-radial} 的解为球贝塞尔函数(spherical Bessel function)和球诺伊曼函数(spherical Neumann function)的线性组合:
\[ R(r) = \frac{u(r)}{r} = A \, \mathrm{j}_\ell(kr) + B \, \mathrm{n}_\ell(kr) \]
4.2 氢原子
库仑势
\[ V(r) = -\frac{e^2}{4 \pi \varepsilon_0} \frac{1}{r} \]
4.2.1 径向波函数
代入径向方程 \eqref{eq:radial-u},得
\[ \begin{equation} \label{eq:hydrogen-radial} -\frac{\hbar^2}{2m_{\text{e}}} \frac{\mathrm{d}^2 u}{\mathrm{d} r^2} + \left[ -\frac{e^2}{4 \pi \varepsilon_0} \frac{1}{r} + \frac{\hbar^2}{2m_{\text{e}}} \frac{\ell(\ell+1)}{r^2} \right] u = E u \end{equation} \]
整理记号,令
\[ \kappa \equiv \sqrt{-\frac{2m_{\text{e}} E}{\hbar^2}}, \quad \rho \equiv \kappa r, \quad \rho_0 \equiv \frac{m_{\text{e}} e^2}{2 \pi \varepsilon_0 \hbar^2 \kappa} \]
式 \eqref{eq:hydrogen-radial} 化为
\[ \begin{equation} \label{eq:hydrogen-radial-rho} \frac{\mathrm{d}^2 u}{\mathrm{d} \rho^2} = \left[ 1 - \frac{\rho_0}{\rho} + \frac{\ell(\ell+1)}{\rho^2} \right] u \end{equation} \]
先分析方程 \eqref{eq:hydrogen-radial-rho} 在 \(\rho \to \infty\) 和 \(\rho \to 0\) 时的渐近行为。\(\rho \to \infty\) 时,方括号内常数项是主要的,因此近似地有
\[ \frac{\mathrm{d}^2 u}{\mathrm{d} \rho^2} \sim u \]
通解为 \(u(\rho) \sim A e^{-\rho} + B e^{\rho}\). 舍去发散解 \(e^{\rho}\),得到 \(\rho\) 比较大时,
\[ u(\rho) \sim A e^{-\rho}. \]
当 \(\rho \to 0\) 时,方括号内 \(\rho^{-2}\) 项主导,则近似地有
\[ \frac{\mathrm{d}^2 u}{\mathrm{d} \rho^2} \sim \frac{\ell(\ell+1)}{\rho^2} u \]
这是个欧拉方程,通解为 \(u(\rho) \sim C \rho^{\ell+1} + D \rho^{-\ell}\). 舍去发散解 \(\rho^{-\ell}\),得到 \(\rho\) 比较小时,
\[ u(\rho) \sim C \rho^{\ell+1}. \]
现在剥离出渐进行为,设方程 \eqref{eq:hydrogen-radial-rho} 的解为
\[ u(\rho) = \rho^{\ell+1} e^{-\rho} v(\rho) \]
一通计算得到
\[ \begin{aligned} \frac{\mathrm{d} u}{\mathrm{d} \rho} &= \rho^{\ell} e^{-\rho} \left[ (\ell + 1 - \rho) v + \rho \frac{\mathrm{d} v}{\mathrm{d} \rho} \right] \\ \frac{\mathrm{d}^2 u}{\mathrm{d} \rho^2} &= \rho^{\ell} e^{-\rho} \left( \left[ -2\ell - 2 + \rho + \frac{\ell(\ell+1)}{\rho} \right] v + 2 (\ell + 1 - \rho) \frac{\mathrm{d} v}{\mathrm{d} \rho} + \rho \frac{\mathrm{d}^2 v}{\mathrm{d} \rho^2} \right) \end{aligned} \]
回代,径向方程 \eqref{eq:hydrogen-radial-rho} 变为
\[ \begin{equation} \label{eq:radical-v} \rho \frac{\mathrm{d}^2 v}{\mathrm{d} \rho^2} + 2(\ell + 1 - \rho) \frac{\mathrm{d} v}{\mathrm{d} \rho} + [\rho_0 - 2(\ell + 1)] v = 0 \end{equation} \]
假设 \(v(\rho)\) 可展为幂级数:
\[ v(\rho) = \sum_{j=0}^{\infty} c_j \rho^j \]
省略 n 页草稿纸,得到递推关系
\[ c_{j+1} = \frac{2(j + \ell + 1) - \rho_0}{(j + 1)(j + 2\ell + 2)} c_j. \]
在 \(j\) 较大时(对应 \(\rho\) 较大的情况,此时高幂次项占主导),
\[ c_{j+1} \approx \frac{2}{j + 1} c_j \implies c_j \approx \frac{2^j}{j!} c_0. \]
4.3 角动量
\[ \boldsymbol{L} = \boldsymbol{r} \times \boldsymbol{p} \]
分量为
\[ \left \{ \begin{aligned} L_x &= y p_z - z p_y = -\mathrm{i} \hbar \left( y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y} \right) \\ L_y &= z p_x - x p_z = -\mathrm{i} \hbar \left( z \frac{\partial}{\partial x} - x \frac{\partial}{\partial z} \right) \\ L_z &= x p_y - y p_x = -\mathrm{i} \hbar \left( x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right) \end{aligned} \right. \]
\(\boldsymbol{r}\) 与 \(\boldsymbol{p}\) 各分量之间的对易关系
\[ \begin{equation} \label{eq:r-p-commutation} [x_i, p_j] = \mathrm{i} \hbar \delta_{ij}, \quad [x_i, x_j] = [p_i, p_j] = 0 \end{equation} \]
对易符号 \([\cdot,\cdot]\) 的几个恒等式
\[ \begin{equation} \label{eq:commutation-id} [AB, C] = A [B, C] + [A, C] B \end{equation} \]
4.3.1 本征值
算符 \(L_x\) 和 \(L_y\) 不对易:
\[ \begin{aligned} \left[L_x, L_y \right] &= [y p_z - z p_y, z p_x - x p_z] \\ &= [y p_z, z p_x] - \cancel{[y p_z, x p_z]} - \cancel{[z p_y, z p_x]} + [z p_y, x p_z] \\ &\overset{\eqref{eq:commutation-id}}{=} y p_x [p_z, z] + x p_y [z, p_z] \overset{\eqref{eq:r-p-commutation}}{=} \mathrm{i} \hbar (x p_y - y p_x) \\ &= \mathrm{i} \hbar L_z \end{aligned} \]
轮换得
\[ \begin{equation} \label{eq:L-commutation} \boxed{ \begin{aligned} \left[L_x, L_y \right] &= \mathrm{i} \hbar L_z \\ [L_y, L_z] &= \mathrm{i} \hbar L_x \\ [L_z, L_x] &= \mathrm{i} \hbar L_y \end{aligned} } \end{equation} \]
所以 \(L_x, L_y, L_z\) 是不相容的可观测量。代入广义不确定性原理,
\[ \sigma_{L_x}^2 \sigma_{L_y}^2 \geq \left( \frac{1}{2\mathrm{i}} \braket{[L_x, L_y]} \right)^2 = \frac{\hbar^2}{4} \braket{L_z}^2 \]
另一方面,总角动量的平方 \(L^2 \equiv L_x^2 + L_y^2 + L_z^2\) 与各分量对易:
\[ \begin{aligned} [L^2, L_x] &= \cancel{[L_x^2, L_x]} + [L_y^2 + L_z^2, L_x] \\ &\overset{\eqref{eq:commutation-id}}{=} L_y [L_y, L_x] + [L_y, L_x] L_y + L_z [L_z, L_x] + [L_z, L_x] L_z \\ &\overset{\eqref{eq:L-commutation}}{=} -\mathrm{i} \hbar (L_y L_z + L_z L_y) + \mathrm{i} \hbar (L_z L_y + L_y L_z) \\ &= 0. \end{aligned} \]
同理, \([L^2, L_y] = [L^2, L_z] = 0\). 简洁的形式为
\[ \begin{equation} \label{eq:L2-commutation} \boxed{ [L^2, \boldsymbol{L}] = 0 } \end{equation} \]
因此 \(L^2\) 与 \(L_x, L_y, L_z\) 是相容的,可以找到它们的共同本征态。比如
\[ L^2 f = \lambda f, \quad L_z f = \mu f. \]
升降算符
定义
\[ \begin{equation} \label{eq:L-ladder} L_{\pm} \equiv L_x \pm \mathrm{i} L_y \end{equation} \]
与 \(L_z\) 的对易关系为
\[ \begin{equation} \label{eq:Lz-L+-commutation} \begin{aligned} [L_z, L_{\pm}] &= [L_z, L_x] \pm \mathrm{i} [L_z, L_y] \\ &\overset{\eqref{eq:L-commutation}}{=} \mathrm{i} \hbar L_y \pm \mathrm{i} (-\mathrm{i} \hbar L_x) = \pm \hbar (L_x \pm \mathrm{i} L_y) \\ &= \pm \hbar L_{\pm} \end{aligned} \end{equation} \]
与 \(L^2\) 显然对易:
\[ \begin{equation} \label{eq:L2-L+-commutation} \begin{aligned} [L^2, L_{\pm}] &= [L^2, L_x] \pm \mathrm{i} [L^2, L_y] \\ &\overset{\eqref{eq:L2-commutation}}{=} 0 \end{aligned} \end{equation} \]
断言:如果 \(f\) 是 \(L^2\) 和 \(L_z\) 的共同本征函数,则 \(L_{\pm} f\) 也是它们的共同本征函数。
\[ \begin{aligned} & L^2 (L_{\pm} f) \overset{\eqref{eq:L2-L+-commutation}}{=} L_{\pm} (L^2 f) = \lambda (L_{\pm} f) \\ & L_z (L_{\pm} f) \overset{\eqref{eq:Lz-L+-commutation}}{=} L_{\pm} (L_z f) \pm \hbar (L_{\pm} f) = (\mu \pm \hbar) (L_{\pm} f) \end{aligned} \]
可以发现 \(L_{\pm}\) 使 \(L_z\) 的本征值增加了或减少了一个 \(\hbar\),故称 \(L_+\) 为升算符(raising operator),\(L_-\) 为降算符(lowering operator)。
升算符不能使用无限多次,否则 \(z\) 分量会超过总角动量的大小。一定存在一个最高的态,使得
\[ L_+ f_{\text{t}}= 0. \]
设 \(\hbar \ell\) 为 \(L_z\) 在该态下的本征值
\[ \begin{equation} \begin{aligned} L_+ f_{\ell}^m &= \hbar \sqrt{\ell (\ell + 1) - m(m+1)} \\ L_- f_{\ell}^m &= \hbar \sqrt{\ell (\ell + 1) - m(m-1)} \end{aligned} \end{equation} \]
4.4 自旋
电子除了轨道角动量之外,存在一种与空间运动无关的角动量,是电子的内禀属性,称为内禀角动量(intrinsic angular momentum),或自旋角动量(spin angular momentum)。
自旋的代数形式与轨道角动量 \eqref{eq:L-commutation} 类似,基本的对易关系为
\[ \begin{equation} \tag{4.4.1} \label{eq:S-commutation} \boxed{ \begin{aligned} \left[S_x, S_y \right] &= \mathrm{i} \hbar S_z \\ [S_y, S_z] &= \mathrm{i} \hbar S_x \\ [S_z, S_x] &= \mathrm{i} \hbar S_y \end{aligned} } \end{equation} \]
\(S^2\) 和 \(S_z\) 的本征矢满足
\[ \begin{equation} \tag{4.4.2} \label{eq:S-eigen} \begin{aligned} S^2 \ket{s, m} &= s(s+1) \hbar^2 \, \ket{s, m} \\ S_z \ket{s, m} &= m \hbar \, \ket{s, m} \end{aligned} \end{equation} \]
以及 \(S_{\pm}\) 的关系
$$
$$
习题 4.33
构造表示沿任意方向 \(\hat{r}\) 的自选角动量矩阵的分量 \(S_r\).使用球坐标系
\[ \hat{r} = \sin \theta \cos \phi \, \hat{i} + \sin \theta \sin \phi \, \hat{j} + \cos \theta \, \hat{k} \]
求出 \(S_r\) 的本征值和本征旋量.
\[ \begin{aligned} S_r &= \hat{r} \cdot \boldsymbol{S} = S_x \sin \theta \cos \phi + S_y \sin \theta \sin \phi + S_z \cos \theta \\ &= \frac{\hbar}{2} \left[ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \sin \theta \cos \phi + \begin{pmatrix} 0 & -\mathrm{i} \\ \mathrm{i} & 0 \end{pmatrix} \sin \theta \sin \phi + \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \cos \theta \right] \\ &= \frac{\hbar}{2} \begin{pmatrix} \cos \theta & e^{-\mathrm{i} \phi} \sin \theta \\ e^{\mathrm{i} \phi} \sin \theta & -\cos \theta \end{pmatrix} \end{aligned} \]
求解本征值:
\[ \begin{vmatrix} \frac{\hbar}{2} \cos \theta - \lambda & \frac{\hbar}{2} e^{-\mathrm{i} \phi} \sin \theta \\ \frac{\hbar}{2} e^{\mathrm{i} \phi} \sin \theta & -\frac{\hbar}{2} \cos \theta - \lambda \end{vmatrix} = \lambda^2 - \left( \frac{\hbar}{2} \right)^2 = 0 \implies \lambda = \pm \frac{\hbar}{2} \]
本征旋量设为 \(\chi = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}\),代入本征方程 \(S_r \chi = \lambda \chi\),得
\[ \beta = e^{\mathrm{i} \phi} \frac{\pm 1 - \cos \theta}{\sin \theta} \alpha \]
归一化后得到两个本征旋量:
\[ \chi_+^{(r)} = \begin{pmatrix} \cos (\theta/2) \\ e^{\mathrm{i} \phi} \sin (\theta/2) \end{pmatrix}, \quad \chi_-^{(r)} = \begin{pmatrix} e^{-\mathrm{i} \phi} \sin (\theta/2) \\ -\cos (\theta/2) \end{pmatrix} \]
习题4.34
构造自旋为 \(1\) 的粒子的自旋矩阵 \(S_x, S_y, S_z\).
\(s = 1 \implies m = -1, 0, 1\),\(S_z\) 本征值为 \(-\hbar, 0, \hbar\),对应的本征矢分别为 \(\chi_+ = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \chi_0 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad \chi_- = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}\).
\[ \begin{aligned} S_+ \chi_- &= \hbar \sqrt{s(s+1) - m(m+1)} \chi_0 = \sqrt{2} \hbar \chi_0 \iff S_+ \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \sqrt{2} \hbar \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \\ S_+ \chi_0 &= \hbar \sqrt{s(s+1) - m(m+1)} \chi_+ = \sqrt{2} \hbar \chi_+ \iff S_+ \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \sqrt{2} \hbar \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \\ S_+ \chi_+ &= 0 \iff S_+ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 0 \\ S_- \chi_+ &= \hbar \sqrt{s(s+1) - m(m-1)} \chi_0 = \sqrt{2} \hbar \chi_0 \iff S_- \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \sqrt{2} \hbar \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \\ S_- \chi_0 &= \hbar \sqrt{s(s+1) - m(m-1)} \chi_- = \sqrt{2} \hbar \chi_- \iff S_- \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \sqrt{2} \hbar \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \\ S_- \chi_- &= 0 \iff S_- \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = 0 \end{aligned} \]
由此可得
\[ S_+ = \sqrt{2} \hbar \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad S_- = \sqrt{2} \hbar \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \]
进而有
\[ \begin{align} S_x &= \frac{1}{2} (S_+ + S_-) = \frac{\hbar}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \\ S_y &= \frac{1}{2\mathrm{i}} (S_+ - S_-) = \frac{\hbar}{\sqrt{2}} \begin{pmatrix} 0 & -\mathrm{i} & 0 \\ \mathrm{i} & 0 & -\mathrm{i} \\ 0 & \mathrm{i} & 0 \end{pmatrix} \\ S_z &= \hbar \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \end{align} \]
4.4.2 磁场中的电子
一个带电旋转粒子构成一个磁偶极子。其磁矩 \(\boldsymbol{\mu}\) 与自旋角动量 \(\boldsymbol{S}\) 成正比:
\[ \begin{equation} \boldsymbol{\mu} = \gamma \boldsymbol{S} \end{equation} \]
式中,\(\gamma\) 为旋磁比(gyromagnetic ratio)。磁偶极子处在磁场 \(\boldsymbol{B}\) 中时,受到力矩 \(\boldsymbol{\mu} \times \boldsymbol{B}\) 的作用,对应的势能为 \(-\boldsymbol{\mu} \cdot \boldsymbol{B}\). 所以静止在磁场中的带电自旋粒子的哈密顿量为
\[ \begin{equation} \label{eq:spin-hamiltonian} H = -\gamma \boldsymbol{B} \cdot \boldsymbol{S} \end{equation} \]
其中,\(\boldsymbol{S}\) 是相应的自旋矩阵。
Larmor 进动
某自旋 \(1/2\) 粒子静止在均匀磁场 \(\boldsymbol{B} = B_0 \hat{k}\) 中,其哈密顿量(式 \eqref{eq:spin-hamiltonian})为
\[ \boldsymbol{H} = -\gamma B_0 S_z = -\frac{\gamma B_0 \hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \]
Stern-Gerlach 实验
\[ H(t) = \begin{cases} 0, & t < 0 \\ -\gamma (B_0 + \alpha z) S_z, & 0 \leq t \leq T \\ 0, & t > T \end{cases} \]
能量 \(E_{\pm} = \mp \gamma (B_0 + \alpha z) \hbar/2\),量子态可以写为
\[ \chi(t) = a \chi_+ e^{-\mathrm{i} E_+ t / \hbar} + b \chi_- e^{-\mathrm{i} E_- t / \hbar} \]
测量的影响
当测量某个可观测量时,仪器和体系会发生相互作用,从而得到最终的测量结果(指针)状态,与此同时,体系的量子态也会发生坍缩到相应的本征态。
此外,环境也会和体系、仪器发生相互作用,导致体系和仪器的纠缠态退相干。
- 体系:\(\ket{\alpha} + \ket{\beta}\)
- 叠加态:\(\ket{\alpha, \nearrow} + \ket{\beta, \nwarrow}\)
- 纠缠态:\(\ket{\alpha} \otimes \ket{\nearrow}\)(脆弱)
体系在测量后坍缩,按概率演化:
\[ \chi(0) = a \chi_+ + b \chi_- \xrightarrow[]{\text{测量 }S_z} \begin{cases} \chi_+, & \text{概率 } |a|^2 \\ \chi_-, & \text{概率 } |b|^2 \end{cases} \xrightarrow[]{\text{测量 }S_x} \begin{cases} \chi_+^{(x)} \\ \chi_-^{(x)} \end{cases} \]
习题4.36
电子静止在振荡磁场 \(\boldsymbol{B} = B_0 \cos(\omega t) \hat{k} \implies\) 哈密顿量随时间变化!
\[ H(t) = \frac{e \hbar}{2 m_{\text{e}}} B_0 \cos(\omega t) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \]
不能使用定态薛定谔方程,而是含时薛定谔方程:
\[ \mathrm{i} \hbar \frac{\partial \chi}{\partial t} = H \chi \]
对于此题可以直接求解!
\[ \begin{aligned} \mathrm{i} \hbar \frac{\partial}{\partial t} \begin{pmatrix} a(t) \\ b(t) \end{pmatrix} &= \frac{e \hbar}{2 m_{\text{e}}} B_0 \cos(\omega t) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} a(t) \\ b(t) \end{pmatrix} \\ \implies \quad a(t) &= a(0) \exp \left( -\mathrm{i} \frac{e B_0}{2 m_{\text{e}} \omega} \sin(\omega t) \right) \\ b(t) &= b(0) \exp \left( \mathrm{i} \frac{e B_0}{2 m_{\text{e}} \omega} \sin(\omega t) \right) \end{aligned} \]
4.4.3 角动量耦合
两个自旋 \(1/2\) 的粒子,总角动量 \(\boldsymbol{S} = \boldsymbol{S}^{(1)} + \boldsymbol{S}^{(2)}\) 是多少?两粒子量子态复合后的净自旋 \(s\) 和 \(z\) 分量 \(m\) 是多少?
设两粒子复合量子态为态相乘 \(\chi_1 \chi_2\). 对于自旋 \(1/2\) 的粒子,共有 4 种可能的复合态:
\[ \ket{\uparrow \uparrow}, \quad \ket{\uparrow \downarrow}, \quad \ket{\downarrow \uparrow}, \quad \ket{\downarrow \downarrow} \]
其中 \(\ket{\uparrow \uparrow}\) 对应 \(s_1 = 1/2, m_1 = 1/2; s_2 = 1/2, m_2 = 1/2\). 写在前面的箭头代表第一个粒子(省略下标了)。角动量算符再写得明确些:
\[ \begin{aligned} \boldsymbol{S} &= \boldsymbol{S}^{(1)} + \boldsymbol{S}^{(2)} \\ S^2 &= \boldsymbol{S} \cdot \boldsymbol{S} \\ S_z &= S_z^{(1)} + S_z^{(2)} \, (= S_z^{(1)} \otimes I^{(2)} + I^{(1)} \otimes S_z^{(2)}) \end{aligned} \]
\(S_z\) 的求解比较简单:
\[ \begin{aligned} S_z \chi_1 \chi_2 &= (S_z^{(1)} + S_z^{(2)}) \chi_1 \chi_2 \\ &= (S_z^{(1)} \chi_1) \chi_2 + \chi_1 (S_z^{(2)} \chi_2) \\ &= \hbar m_1 \chi_1 \chi_2 + \chi_1 \hbar m_2 \chi_2 \\ &= \hbar (m_1 + m_2) \chi_1 \chi_2 \end{aligned} \]
因此复合态的 \(m\) 值为 \(m = m_1 + m_2\). 对于自旋为 \(1/2\) 的两粒子,\(m = 1, 0, -1\). 而 \(m\) 的取值范围为 \(-s, -s+1, \ldots, s-1, s\),
结论
自旋为 \(s_1\) 和 \(s_2\) 的两个粒子,总自旋
\[ s = s_1 + s_2, s_1 + s_2 - 1, \ldots, |s_1 - s_2| \]
习题4.64
表达空间和自旋的组合状态
\[ R_{21} \left(\sqrt{\frac{1}{3}} Y_1^0 \chi_{+} + \sqrt{\frac{2}{3}} Y_1^1 \chi_{-}\right) \]
或
\[ \left(\sqrt{\frac{1}{3}} R_{21} Y_1^0 + \sqrt{\frac{2}{3}} R_{21} Y_1^1 \right) \left(\frac{1}{\sqrt{2}} (\chi_{+} + \chi_{-})\right) \]
4.5 电磁作用
4.5.1 最小耦合
洛伦兹力 \(\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})\) 不能用标量势函数的梯度表示,因此不能简单地用 \(-\frac{\hbar^2}{2m} \nabla^2 + V\) 来表示哈密顿量。需要引入矢势 \(\boldsymbol{A}\),使得
\[ \begin{equation} \label{eq:em-potentials} \tag{4.5.1} \boldsymbol{E} = -\nabla \varphi - \frac{\partial \boldsymbol{A}}{\partial t}, \quad \boldsymbol{B} = \nabla \times \boldsymbol{A} \end{equation} \]
经典哈密顿量为
\[ \begin{equation} \label{eq:hamiltonian-em-classic} \tag{4.5.2} H = \frac{1}{2m} (\boldsymbol{p} - q \boldsymbol{A})^2 + q \varphi \end{equation} \]
做标准代换 \(\boldsymbol{p} \to -i \hbar \nabla\),得到哈密顿算符
\[ \begin{equation} \label{eq:hamiltonian-em} \tag{4.5.3} \hat{H} = \frac{1}{2m} (-i \hbar \nabla - q \boldsymbol{A})^2 + q \varphi \end{equation} \]
薛定谔方程变为
\[ \begin{equation} \label{eq:schrodinger-em} \tag{4.5.4} \mathrm{i} \hbar \frac{\partial \boldsymbol{\Psi}}{\partial t} = \left[ \frac{1}{2m} (-i \hbar \nabla - q \boldsymbol{A})^2 + q \varphi \right] \boldsymbol{\Psi} \end{equation} \]
这也被称为最小耦合规则(minimal coupling rule)。
朗道能级(Landau Levels)
习题 4.43:
\[ \boldsymbol{A} = \frac{B_0}{2} (-y \hat{i} + x \hat{j}), \quad \varphi = K z^2 \]
4.5.2 AB 效应
经典电动力学中,\eqref{eq:em-potentials} 中的电势 \(\boldsymbol{A}\) 和 \(\varphi\) 不是唯一确定的。具体来说,这样的势
\[ \begin{equation} \label{eq:gauge-transform} \tag{4.5.5} \varphi' = \varphi - \frac{\partial \Lambda}{\partial t}, \quad \boldsymbol{A}' = \boldsymbol{A} + \nabla \Lambda \end{equation} \]
也能给出与 \(\varphi\) 和 \(\boldsymbol{A}\) 相同的电场和磁场。这种变换被称为规范变换(gauge transformation),这个理论是规范不变的(gauge invariant)。